8.已知角α的終邊上一點是P(-4,3),則sinα=( 。,cosα=( 。
A.-$\frac{4}{5}$,$\frac{3}{5}$B.$\frac{3}{5}$,-$\frac{4}{5}$C.-$\frac{4}{3}$,$\frac{4}{5}$D.-$\frac{3}{4}$,$\frac{4}{5}$

分析 由題意可得,x=-4、y=3、r=|OP|=5,再由sinα,cosα的定義求得結(jié)果.

解答 解:由題意可得,x=-4、y=3、r=|OP|=5,故sinα=$\frac{y}{r}$=$\frac{3}{5}$,
cosα=$\frac{x}{r}$=$-\frac{4}{5}$.
故選:B.

點評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,f(x)=3sin($\frac{1}{2}$x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知兩向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$滿足|$\overrightarrow{{e}_{1}}$|=|$\overrightarrow{{e}_{2}}$|=1,且$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為60°,若向量2t$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$與向量$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$的夾角為鈍角,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)集合A={x|-2≤x≤3},B={x|x≥1},則集合A∩B=[1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.log381+log41-($\frac{3}{5}$)0=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.對于向量的集合A叫A={$\overrightarrow{v}$=(x,y)|x2+y2≤1}中的任意兩個向量$\overrightarrow{{v}_{1}}$、$\overrightarrow{{v}_{2}}$與兩個非負實數(shù)α、β;求證:向量α$\overrightarrow{{v}_{1}}$+β$\overrightarrow{{v}_{2}}$的大小不超過α+β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{lg({x}^{2}-4x+3)}$的單調(diào)增區(qū)間是(-∞,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)D,E,F(xiàn)分別是△ABC的邊BC,CA,AB上的點,且AF=$\frac{1}{3}$AB,BD=$\frac{1}{4}$BC,CE=$\frac{1}{2}$CA,若記$\overrightarrow{AB}$=$\overrightarrow{m}$,$\overrightarrow{CA}$=$\overrightarrow{n}$,試用$\overrightarrow{m}$,$\overrightarrow{n}$表示$\overrightarrow{BE}$+$\overrightarrow{FD}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,$\overrightarrow{AD}$=$2\overrightarrow{DB}$,若$\overrightarrow{CB}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow$,則$\overrightarrow{CD}$=( 。
A.$\frac{1}{3}\overrightarrow{a}+\frac{2}{3}\overrightarrow$B.$\frac{2}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow$C.$\frac{3}{5}\overrightarrow{a}+\frac{4}{5}\overrightarrow$D.$\frac{4}{5}\overrightarrow{a}+\frac{3}{5}\overrightarrow$

查看答案和解析>>

同步練習冊答案