分析 通過an +$\frac{1}{{a}_{n}}$=2Sn可知${{a}_{n}}^{2}$-2anSn+1=0,從而${{a}_{n}}^{2}$-2anSn+${{S}_{n}}^{2}$+1=${{S}_{n}}^{2}$,進(jìn)而數(shù)列{${{S}_{n}}^{2}$}是首項(xiàng)、公差均為1的等差數(shù)列,利用an=Sn-Sn-1計(jì)算即得結(jié)論.
解答 解:依題意,易知a1=1,
∵an +$\frac{1}{{a}_{n}}$=2Sn,
∴${{a}_{n}}^{2}$-2anSn+1=0,
∴${{a}_{n}}^{2}$-2anSn+${{S}_{n}}^{2}$+1=${{S}_{n}}^{2}$,
∴$({S}_{n}-{a}_{n})^{2}$+1=${{S}_{n}}^{2}$,
即${{S}_{n-1}}^{2}$+1=${{S}_{n}}^{2}$(n≥2),
又∵${{S}_{1}}^{2}$=1,
∴數(shù)列{${{S}_{n}}^{2}$}是首項(xiàng)、公差均為1的等差數(shù)列,
∴${{S}_{n}}^{2}$=n,
∴Sn=$\sqrt{n}$,
∴an=Sn-Sn-1=$\sqrt{n}$-$\sqrt{n-1}$(n≥2),
又∵a1=1滿足上式,
∴an=$\sqrt{n}$-$\sqrt{n-1}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 128 | B. | 64 | C. | 28 | D. | 214 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com