分析 (I)由于{an}是等差數(shù)列,可得S6=$\frac{6({a}_{1}+{a}_{6})}{2}$=3(a2+a5).
(Ⅱ)由{an}是等比數(shù)列,設(shè)它的公比為q,可得q3=$\frac{{a}_{5}}{{a}_{2}}$=-$\frac{1}{8}$,解得q.可得an=${a}_{2}{q}^{n-2}$,再利用等比數(shù)列的前n項和公式即可得出.
解答 解:(Ⅰ)∵{an}是等差數(shù)列,
∴S6=$\frac{6({a}_{1}+{a}_{6})}{2}$=3(a2+a5)=3×$(2-\frac{1}{4})$=$\frac{21}{4}$.
(Ⅱ)∵{an}是等比數(shù)列,設(shè)它的公比為q,則
q3=$\frac{{a}_{5}}{{a}_{2}}$=-$\frac{1}{8}$,解得q=-$\frac{1}{2}$.
∴an=${a}_{2}{q}^{n-2}$=$2×(-\frac{1}{2})^{n-2}$=-$(-\frac{1}{2})^{n-3}$,
∴|an|=$(\frac{1}{2})^{n-3}$,
∴數(shù)列{|an|}是以4為首項,公比為$\frac{1}{2}$的等比數(shù)列,
∴Tn=$\frac{4[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$=8-23-n.
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a∥α,a∥β,則α∥β | B. | 若a?α,a∥β,則α∥β | C. | 若a⊥α,a⊥β,則α⊥β | D. | 若a?α,a⊥β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③④ | B. | ①④ | C. | ③④ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | {2,3} | C. | {0,1} | D. | {2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22 | B. | 33 | C. | 44 | D. | 55 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com