分析 (Ⅰ)求得a=1的函數(shù)f(x)的導(dǎo)數(shù),求得單調(diào)區(qū)間和極值,由題意可得,只要b介于極小值和極大值之間;
(Ⅱ)求得f(x)的導(dǎo)數(shù),對(duì)a討論,當(dāng)a=0時(shí),當(dāng)a>0時(shí),當(dāng)a<0時(shí),求得單調(diào)區(qū)間,即可得到最小值,再由不等式恒成立思想即可得到.
解答 解:(Ⅰ)f'(x)=x2-1=(x+1)(x-1),
令f′(x)=0,x1=-1,x2=1,
當(dāng)x變化時(shí),f′(x),f(x)的取值情況如下:
x | (-∞,-1) | -1 | (-1,1) | 1 | (1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 增 | 極大值 | 減 | 極小值 | 增 |
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,同時(shí)考查不等式恒成立思想轉(zhuǎn)化為求函數(shù)的最值,注意運(yùn)用分類討論的思想方法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{11}$ | C. | -$\frac{1}{5}$ | D. | -$\frac{2}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 55,53 | B. | 51,49 | C. | 55,49 | D. | 53,51 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$] | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,1) | D. | [1,+∞﹚ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6y2-12x2=1 | B. | 12x2-6y2=1 | C. | 2x2-2y2=1 | D. | 4x2-4y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com