分析 (1)先取AA1的中點M,連接EM,BM,根據(jù)中位線定理可知EM∥AD,而AD⊥平面ABB1A1,則EM⊥面ABB1A1,從而BM為直線BE在平面ABB1A1上的射影,則∠EBM直線BE與平面ABB1A1所成的角,設(shè)正方體的棱長為2,則EM=AD=2,BE=3,BM=$\sqrt{5}$,于是在Rt△BEM中,用反正切表示出∠MBE即可.
(2)在棱C1D1上存在點F,使B1F平面A1BE,分別取C1D1和CD的中點F,G,連接EG,BG,CD1,F(xiàn)G,因A1D1∥B1C1∥BC,且A1D1=BC,所以四邊形A1BCD1為平行四邊形,根據(jù)中位線定理可知EG∥A1B,從而說明A1,B,G,E共面,則BG?面A1BE,根據(jù)FG∥C1C∥B1G,且FG=C1C=B1B,從而得到四邊形B1BGF為平行四邊形,則B1F∥BG,而B1F?平面A1BE,BG?平面A1BE,根據(jù)線面平行的判定定理可知B1F∥平面A1BE.
解答 解:(1)如圖(a),取AA1的中點M,連接EM,BM,因為E是DD1的中點,四邊形ADD1A1為正方形,所以EM∥AD.
又在正方體ABCD-A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,從而BM為直線BE在平面ABB1A1上的射影,
∠EBM直線BE與平面ABB1A1所成的角.
設(shè)正方體的棱長為2,則EM=AD=2,BE=$\sqrt{{2}^{2}+{2}^{2}+{1}^{2}}$=3,BM=$\sqrt{{3}^{2}{-2}^{2}}$=$\sqrt{5}$
于是在Rt△BEM中,tan∠EBM=$\frac{ME}{BM}$=$\frac{2\sqrt{5}}{5}$,
即直線BE與平面ABB1A1所成的角是$arctan\frac{{2\sqrt{5}}}{5}$.
(2)在棱C1D1上存在點F,使B1F平面A1BE,
事實上,如圖(b)所示,分別取C1D1和CD的中點F,G,連接EG,BG,CD1,F(xiàn)G,
因A1D1∥B1C1∥BC,且A1D1=BC,所以四邊形A1BCD1為平行四邊形,
因此D1C∥A1B,又E,G分別為D1D,CD的中點,所以EG∥D1C,從而EG∥A1B,這說明A1,B,G,E共面,所以BG?平面A1BE
因四邊形C1CDD1與B1BCC1皆為正方形,F(xiàn),G分別為C1D1和CD的中點,所以FG∥C1C∥B1B,且FG=C1C=B1B,因此四邊形B1BGF為平行四邊形,所以B1F∥BG,而B1F?平面A1BE,BG?平面A1BE,故B1F∥平面A1BE.
點評 本題考查直線與平面所成的角,直線與平面平行,考查考生探究能力、空間想象能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | ±$\frac{7}{2}$ | C. | $\sqrt{10}$ | D. | ±$\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | [1,2] | C. | [1,2) | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,\frac{1}{2}}]∪[{1,+∞})$ | B. | $[{\frac{1}{2},1}]$ | C. | $[0,\frac{1}{2}]∪[{1,+∞})$ | D. | (-∞,0]∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com