分析 由已知及正弦定理可求AB的值,結(jié)合余弦定理即可得解cosB的值.
解答 解:∵sinC=2sinA,BC=$\sqrt{5}$,
∴由正弦定理可得:AB=2BC=2$\sqrt{5}$,
∴由余弦定理可得:cosB=$\frac{B{C}^{2}+A{B}^{2}-A{C}^{2}}{2•AB•AC}$=$\frac{5+20-9}{2×2\sqrt{5}×3}$=$\frac{4\sqrt{5}}{15}$.
故答案為:$\frac{4\sqrt{5}}{15}$.
點(diǎn)評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,熟練記憶公式是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$ | B. | $\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$ | C. | $\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$ | D. | $\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com