7.?dāng)?shù)列滿足a0=$\frac{1}{3}$,及對(duì)于自然數(shù)n,an+1=an2+an,則$\sum_{n=0}^{2015}{\frac{1}{{{a_n}+1}}}$的整數(shù)部分是( 。
A.4B.3C.2D.1

分析 通過對(duì)an+1=an2+an變形可知$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,進(jìn)而并項(xiàng)相加即得結(jié)論.

解答 解:∵an+1=an2+an,
∴$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}({a}_{n}+1)}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$,
即$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
∴$\sum_{n=0}^{2015}{\frac{1}{{{a_n}+1}}}$=($\frac{1}{{a}_{0}}$-$\frac{1}{{a}_{1}}$)+($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$)+…+($\frac{1}{{a}_{2015}}$-$\frac{1}{{a}_{2016}}$)
=$\frac{1}{{a}_{0}}$-$\frac{1}{{a}_{2016}}$
=3-$\frac{1}{{a}_{2016}}$,
故選:C.

點(diǎn)評(píng) 本題考查數(shù)列的求和,對(duì)表達(dá)式的靈活變形及裂項(xiàng)是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=$\frac{x+7}{k{x}^{2}+4kx+3}$的定義域是R,則實(shí)數(shù)k的取值范圍是$[0,\frac{3}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某校早上8:00開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~7:50之間到校,且每人在該時(shí)間段的任何時(shí)刻到校是等可能的,則小張比小王至少早5分鐘到校的概率為(  )
A.$\frac{9}{16}$B.$\frac{9}{32}$C.$\frac{7}{16}$D.$\frac{23}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}的前n項(xiàng)和為Sn且Sn=$\frac{1}{2}({n^2}+n),(n∈{N^*})$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${c_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,數(shù)列{cn}的前n項(xiàng)和Tn,求使${T_n}<\frac{37}{41}$成立的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1
(2)在棱CC1上是否存在點(diǎn)E,使AE⊥A1B?若存在,求出EC的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AB=BC=1,PA=AD=2,PA⊥平面ABCD,CD⊥PC,E為AD的中點(diǎn).
(1)求證:CE∥平面PAB;
(2)求異面直線CD與PB所成角的大小;
(3)畫出平面PAB與平面PCD的交線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下面五個(gè)命題中,其中正確的命題序號(hào)為①②⑤.
①函數(shù)$y=|{sinx+\frac{1}{2}}|$的最小正周期T=2π;
②函數(shù)$f(x)=4cos(2x-\frac{π}{6})$的圖象關(guān)于點(diǎn)$(-\frac{π}{6},0)$對(duì)稱;
③函數(shù)$y=sin({2x+\frac{π}{3}})$的圖象關(guān)于直線$x=\frac{π}{3}$對(duì)稱;
④在$(-\frac{π}{2},\frac{π}{2})$內(nèi)方程tanx=sinx有3個(gè)解;
⑤在△ABC中,若A>B,則sinA>sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知某幾何體的三視圖,則該幾何體的體積是$\frac{{4\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=x,則$f({-{2^{{{log}_2}\frac{1}{2}}}})$=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案