14.與⊙D:(x+1)2+(y-2)2=$\frac{1}{2}$相切且在兩坐標(biāo)軸上的截距相等的直線的條數(shù)有(  )
A.1B.2C.3D.4

分析 由題意畫出圖形,然后分直線過原點(diǎn)和不過原點(diǎn)討論求解.

解答 解:作出⊙D:(x+1)2+(y-2)2=$\frac{1}{2}$如圖,
由圖可知,當(dāng)直線過原點(diǎn)時(shí),設(shè)直線方程為y=kx,即kx-y=0,
由D(-1,2)到切線的距離等于圓的半徑得:$\frac{|-k-2|}{\sqrt{{k}^{2}+1}}=\frac{\sqrt{2}}{2}$,
解得k1=-1,k2=-7,此時(shí)切線方程有兩條;
當(dāng)截距相等不為0時(shí),設(shè)切線方程為x+y=a,即x+y-a=0,
由$\frac{|-1+2-a|}{\sqrt{2}}=\frac{\sqrt{2}}{2}$,解得a=0或a=2.
∴與⊙D:(x+1)2+(y-2)2=$\frac{1}{2}$相切且在兩坐標(biāo)軸上的截距相等的直線的條數(shù)有3條.
故選:C.

點(diǎn)評(píng) 本題考查圓的切線方程,考查了數(shù)形結(jié)合的解題思想方法和分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)N,M分別是BD,B1C的點(diǎn).
(1)若點(diǎn)N,M分別是BD,B1C的中點(diǎn),求證:MN∥AA1B1B;
(2)若$\frac{{B}_{1}M}{MC}$=$\frac{BN}{ND}$=$\frac{1}{2}$,則上述結(jié)論還成立嗎?若成立請(qǐng)給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)P表示平面內(nèi)的動(dòng)點(diǎn),A,B是該平面內(nèi)兩個(gè)定點(diǎn).已知集合M={P|PA=PB},則屬于集合M的所有點(diǎn)P組成的圖形是( 。
A.任意△PABB.等腰△PAB
C.線段AB的垂直平分線D.以線段AB為直徑的圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知x,y,z均為正數(shù),且x2+4y2+z2=3
(1)證明:x+2y+z≤3;
(2)求2xy+2yz+zx的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F(0,1).
(Ⅰ)求拋物線C的方程;
(Ⅱ)直線AB與拋物線C交于點(diǎn)A,B(A在第一象限),與y軸交于點(diǎn)C,$\overrightarrow{AC}=2\overrightarrow{CB}$,若△OAB是銳角三角形,求直線AB斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=-1+tcosα}\\{1+tsinα}\end{array}\right.$(t為參數(shù),其中0≤α<π).以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ+$\frac{9}{ρ}$=4cosθ-6sinθ(ρ>0)
(I)當(dāng)α=$\frac{3π}{4}$時(shí),設(shè)曲線C1與C2交于A、B兩點(diǎn),求|AB|;
(Ⅱ)已知曲線C1過定點(diǎn)P,Q是曲線C2上的動(dòng)點(diǎn),求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線y=x-2與拋物線y2=8x交于A,B兩點(diǎn),則|AB|=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\sqrt{3}$sin2x-2cos2x,下面結(jié)論中錯(cuò)誤的是(  )
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱$
C.函數(shù)f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù)
D.函數(shù)f(x)的圖象可由g(x)=2sin2x-1的圖象向右平移$\frac{π}{6}$個(gè)單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知x,y滿足x2+y2=1,求證:|ax+by|≤$\sqrt{{a}^{2}+^{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案