2.已知函數(shù)$f(x)=a-\frac{2}{{{2^x}+1}}$為R上的奇函數(shù),則a的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

分析 根據(jù)函數(shù)奇偶性的性質(zhì),利用f(0)=0,進(jìn)行求解即可.

解答 解:函數(shù)f(x)的定義域?yàn)椋?∞,+∞),
若f(x)是奇函數(shù),則f(0)=0,
即f(0)=a-$\frac{2}{1+1}$=a-1=0,
得a=1,
故選:C.

點(diǎn)評 本題主要考查函數(shù)奇偶性的應(yīng)用,利用性質(zhì)f(0)=0是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若U={1,2,3,4},A={1},B⊆∁UA,寫出滿足條件的集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,四棱錐P-ABCD的底面是平行四邊形,PA=PB=AB=2,E,F(xiàn)分別是AB,CD的中點(diǎn),平面AGF∥平面PEC,PD∩平面AGF=G,ED與AF相交于點(diǎn)H,則GH=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=$\frac{{{x^2}-1}}{x+1}$,則f(f(-2))=(  )
A.2B.0C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,1)時,f(x)=$\frac{{2}^{x}}{{4}^{x}+1}$.
(1)求f(x)在(-1,0)上的解析式;
(2)證明:f(x)在(0,1)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|.
(1)在給出的坐標(biāo)系中作出y=f(x)的圖象(若有漸近線,把漸近線畫成虛線);
(2)若集合{x|f(x)=a}中恰有兩個元素,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過點(diǎn)(2,3)且在x軸上的截距為3的直線方程是3x+y-9=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果$0<{log_{\frac{1}{2}}}x$$<{log_{\frac{1}{2}}}y$,那么( 。
A.0<y<x<1B.0<x<y<1C.y>x>1D.x>y>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列各組函數(shù)相等的是( 。
A.$f(x)=\frac{{{x^2}-1}}{x-1}與g(x)=x+1$B.$f(x)=1與g(x)=\frac{{\sqrt{x^2}}}{x}$
C.f(x)=(x-2)0與g(x)=1D.$f(x)=\sqrt{x^4}與g(x)={x^2}$

查看答案和解析>>

同步練習(xí)冊答案