A. | a<-$\frac{1}{e}$ | B. | a$≤-\frac{1}{2e}$ | C. | -1≤a<0 | D. | -$\frac{1}{e}$<a≤-$\frac{1}{2e}$ |
分析 由分段函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x≤e}\\{a(x+e),x>e}\end{array}\right.$是(0,+∞)上的減函數(shù)知$\left\{\begin{array}{l}{a<0}\\{a(e+e)≤-lne}\end{array}\right.$,從而解得可排除C,再令a=-1,從而代入可排除A,B;從而確定答案.
解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x≤e}\\{a(x+e),x>e}\end{array}\right.$是(0,+∞)上的減函數(shù),
∴$\left\{\begin{array}{l}{a<0}\\{a(e+e)≤-lne}\end{array}\right.$,
解得,a≤-$\frac{1}{2e}$;
故排除C;
當a=-1時,
函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x≤e}\\{a(x+e),x>e}\end{array}\right.$的圖象如右圖,
對任意m∈(0,e],n∈(e,+∞)有f($\frac{m+n}{2}$)$<\frac{1}{2}$[f(m)+f(n)]不能成立,
故排除A,B;
故選D.
點評 本題考查了分段函數(shù)的應用及數(shù)形結合的思想應用,同時考查了排除法的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 1或2 | D. | 2或4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com