已知平行六面體ABCD-A1B1C1D1,底面ABCD為菱形,∠BCD=∠C1CD=60°,求:當(dāng)
CC1
CD
為何值時(shí),有A1C⊥平面C1BD.
考點(diǎn):直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:當(dāng)
CC1
CD
為1時(shí),能使A1C⊥平面C1BD,A1C與C1O相交于G,說(shuō)明點(diǎn)G是正三角形C1BD的中心,證明CG⊥平面C1BD,即可證明A1C⊥平面C1BD.
解答: 解:當(dāng)
CC1
CD
為1時(shí),能使A1C⊥平面C1BD.
∵當(dāng)
CC1
CD
為1時(shí),
∴BC=CD=C1C,
又∠BCD=∠C1CB=∠C1CD,
由此可推得BD=C1B=C1D.
∴三棱錐C-C1BD是正三棱錐.(9分)
設(shè)A1C與C1O相交于G.
∵A1C1∥AC,且A1C1:OC=2:1,
∴C1G:GO=2:1.
又C1O是正三角形C1BD的BD邊上的高和中線,
∴點(diǎn)G是正三角形C1BD的中心,
∴CG⊥平面C1BD,
即A1C⊥平面C1BD.
點(diǎn)評(píng):本小題主要考查直線與直線、直線與平面的關(guān)系,邏輯推理能力,考查空間想象能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線AC、DF被三個(gè)平行平面α、β、γ所截:
(1)是否一定有AD∥BE∥CF;
(2)求證:
AB
BC
=
DE
EF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲,乙,丙三名運(yùn)動(dòng)員在某次測(cè)試中各射擊20次,三人測(cè)試成績(jī)的頻率分布條形圖分別如圖1,圖2和圖3,若S,S,S分別表示他們測(cè)試成績(jī)的標(biāo)準(zhǔn)差,則( 。
A、S<S<S
B、S<S<S
C、S<S<S
D、S<S<S

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx,g(x)=ax+
b
x
,若函數(shù)f(x)的圖象與x軸的交點(diǎn)也在函數(shù)g(x)的圖象上,且在此點(diǎn)有公切線.
(Ⅰ)求a,b的值;
(Ⅱ) 證明:當(dāng)x>1時(shí),f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=
25-x2
+tanx的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

t取何值時(shí),直線L1:(t-2)x+y+t=0與L2:3x+ty+t+6=0
(1)平行;
(2)相交;
(3)垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩點(diǎn)A(-2,1),B(2,-3),在坐標(biāo)軸上求一點(diǎn)P,使∠APB=90°,并求出線段AB的垂直平分線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足1=a1≤a2≤…≤an≤…,數(shù)列{bn}滿足bn=
an
an+1
1
an
-
1
an+1
),Sn為數(shù)列{bn}的前n項(xiàng)和,證明:
(1)對(duì)于n∈N*,0≤Sn<2;
(2)對(duì)于任意c∈[0,2),存在數(shù)列{an}使關(guān)于n的不等式Sn>c有無(wú)數(shù)個(gè)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={(x,y)|y=f(x)},對(duì)于任意實(shí)數(shù)對(duì)(x1,y1)∈M,存在實(shí)數(shù)對(duì)(x2,y2)∈M使得x1x2+y1y2=0成立,則稱集命M是:“孿生對(duì)點(diǎn)集”給出下列五個(gè)集合:
①M(fèi)={(x,y)|y=
1
x
};
②M={(x,y)|y=ex-2};
③M={(x,y)|y=sinx};
④M={(x,y)|y=x2-1};
⑤M={(x,y)|y=1nx}
其中不是“孿生對(duì)點(diǎn)集”的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案