8.已知i是虛數(shù)單位,若1+i=z(1-i),則z的虛部為( 。
A.-1B.-iC.iD.1

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:1+i=z(1-i),
∴z=$\frac{1-i}{1+i}$=$\frac{(1-i)^{2}}{(1+i)(1-i)}$=$\frac{-2i}{2}$=-i,
∴z的虛部為1.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)全集U=R,集合A={x|x≤3或x≥6},B={x|-2<x<9}.
(1)求A∪B,(∁UA)∩B;
(2)已知C={x|a<x<a+1},若B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.下列函數(shù)中:
(1)$y=|x|+\frac{1}{|x|}$(2)$y=\frac{{{x^2}+5}}{{\sqrt{{x^2}+4}}}$(3)$y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$(4)$y=\frac{{{x^2}-2x+4}}{x}$(5)$y=sinx+\frac{1}{sinx}(0<x<\frac{π}{2})$,其中最小值為2的函數(shù)是(1)(3) (填正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,PA⊥面ABCD,PA=$\sqrt{3}$,E,F(xiàn)分別為BC,PA的中點(diǎn).
(I)求證:BF∥面PDE;
(Ⅱ)求二面角D-PE-A的大小的正弦值;
(Ⅲ)求點(diǎn)C到面PDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)是R上的奇函數(shù),在(0,+∞)上是增函數(shù),且f(3)=0,則滿足f(x)>0的實(shí)數(shù)x的范圍是(  )
A.(-∞,-3)∪(0,3)B.(-3,0)∪(3,+∞)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}2x+y≤4\\ x+2y≥2\\ x≥0\end{array}\right.$,則目標(biāo)函數(shù)z=x-y的最小值為(  )
A.2B.-4C.-1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)f(x)是定義在R上的偶函數(shù),若f(x)在區(qū)間[0,+∞)是增函數(shù),且f(2)=0,則不等式f(x+2)>0的解集為(-∞,-4)∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=ln(1-2x)的單調(diào)區(qū)間是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.作出函數(shù)y=-sinx,x∈[-π,π]的簡(jiǎn)圖,并回答下列問(wèn)題:
(1)觀察函數(shù)圖象,寫出滿足下列條件的x的區(qū)間.
①-sinx>0;②-sinx<0.
(2)直線y=$\frac{1}{2}$與y=-sinx的圖象有幾個(gè)交點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案