9.設雙曲線x2-$\frac{y^2}{3}$=1的左、右焦點分別為F1、F2,若點P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是$(2\sqrt{7},8)$.

分析 由題意畫出圖形,以P在雙曲線右支為例,求出∠PF2F1和∠F1PF2為直角時|PF1|+|PF2|的值,可得△F1PF2為銳角三角形時|PF1|+|PF2|的取值范圍.

解答 解:如圖,
由雙曲線x2-$\frac{y^2}{3}$=1,得a2=1,b2=3,
∴$c=\sqrt{{a}^{2}+^{2}}=2$.
不妨以P在雙曲線右支為例,當PF2⊥x軸時,
把x=2代入x2-$\frac{y^2}{3}$=1,得y=±3,即|PF2|=3,
此時|PF1|=|PF2|+2=5,則|PF1|+|PF2|=8;
由PF1⊥PF2,得$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}=|{F}_{1}{F}_{2}{|}^{2}=4{c}^{2}=16$,
又|PF1|-|PF2|=2,①
兩邊平方得:$|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}-2|P{F}_{1}||P{F}_{2}|=4$,
∴|PF1||PF2|=6,②
聯(lián)立①②解得:$|P{F}_{1}|=1+\sqrt{7},|P{F}_{2}|=-1+\sqrt{7}$,
此時|PF1|+|PF2|=$2\sqrt{7}$.
∴使△F1PF2為銳角三角形的|PF1|+|PF2|的取值范圍是($2\sqrt{7},8$).
故答案為:($2\sqrt{7},8$).

點評 本題考查雙曲線的簡單性質(zhì),考查雙曲線定義的應用,考查數(shù)學轉(zhuǎn)化思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.某職業(yè)學校有三個年級,共有1000名學生,其中一年級有350名,若從全校學生中任意選出一名學生,則恰好選到二年級學生的概率是0.32,現(xiàn)計劃利用分層抽樣的方法,從全體學生中選出100名參加座談會,那么需要從三年級學生中選出33名.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知互相垂直的平面α,β交于直線l,若直線m,n滿足m∥α,n⊥β,則( 。
A.m∥lB.m∥nC.n⊥lD.m⊥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設a∈R,函數(shù)f(x)=x2+|x-a|+1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)當a=0時,求出函數(shù)f(x)的單調(diào)區(qū)間;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若平面區(qū)域$\left\{\begin{array}{l}{x+y-3≥0}\\{2x-y-3≤0}\\{x-2y+3≥0}\end{array}\right.$,夾在兩條斜率為1的平行直線之間,則這兩條平行直線間的距離的最小值是( 。
A.$\frac{3\sqrt{5}}{5}$B.$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,設拋物線y2=2px(p>0)的焦點為F,拋物線上的點A到y(tǒng)軸的距離等于|AF|-1,
(Ⅰ)求p的值;
(Ⅱ)若直線AF交拋物線于另一點B,過B與x軸平行的直線和過F與AB垂直的直線交于點N,AN與x軸交于點M,求M的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知銳角α,β滿足tan(α-β)=sin2β,求證:2tan2β=tanα+tanβ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.△ABC底邊BC=10,∠A=$\frac{1}{2}$∠B,以B為極點,BC為極軸,求頂點A的軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.B.$\frac{40π}{3}$C.$\frac{20π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

同步練習冊答案