分析 由于α是第二象限角,故sinα>0,cosα<0.將切化弦化簡(jiǎn),使用同角三角函數(shù)的性質(zhì)開方得出結(jié)果.
解答 解:∵α為第二象限角,∴sinα>0,cosα<0.
∴cosα$\sqrt{1+ta{n}^{2}α}$+sinα$\sqrt{1+\frac{1}{ta{n}^{2}α}}$=cosα$\sqrt{\frac{co{s}^{2}α+si{n}^{2}α}{co{s}^{2}α}}$+sinα$\sqrt{\frac{si{n}^{2}α+co{s}^{2}α}{si{n}^{2}α}}$=cosα×$\frac{1}{-cosα}$+sinα×$\frac{1}{sinα}$=-1+1=0.
點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)求值,注意角的范圍是解題關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ③④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com