12.如圖,設(shè)橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)焦點(diǎn)F1的直線交橢圓于A(x1,y1),B(x2,y2)兩點(diǎn),若△ABF2的內(nèi)切圓的面積為π,則|y1-y2|=3.

分析 由已知△ABF2內(nèi)切圓半徑r=1.,從而求出△ABF2,再由ABF2面積=$\frac{1}{2}$|y1-y2|×2c,能求出|y1-y2|.

解答 解:∵橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,a=3,b=$\sqrt{5}$,c=2,
過(guò)焦點(diǎn)F1的直線交橢圓于A(x1,y1),B(x2,y2)兩點(diǎn),△ABF2的內(nèi)切圓的面積為π,
∴△ABF2內(nèi)切圓半徑r=1.
△ABF2面積S=$\frac{1}{2}$×1×(AB+AF2+BF2)=2a=6,
∴ABF2面積S=$\frac{1}{2}$|y1-y2|×2c=.$\frac{1}{2}$|y1-y2|×2×2=6,
∴|y1-y2|=3.
故答案為:3.

點(diǎn)評(píng) 本題考查兩點(diǎn)縱坐標(biāo)之差的絕對(duì)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.拋物線y2=2x上兩點(diǎn)A,B,已知AB的中點(diǎn)在直線x=2上,F(xiàn)為拋物線焦點(diǎn),則|AF|+|BF|=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到y(tǒng)軸距離之和最小值是$\sqrt{17}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知直線y=kx+1,當(dāng)k變化時(shí),此直線被橢圓$\frac{{x}^{2}}{4}$+y2=1截得的最大弦長(zhǎng)是( 。
A.4B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=ex-ax
(1)若函數(shù)f(x)在x=1處取得極值,求函數(shù)y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)當(dāng)x≥0,f(x)-f(-x)≥0恒成立,求a的最大值;
(3)當(dāng)a=1,解關(guān)于x的不等式:$\left\{\begin{array}{l}{f(x)≤f(1)}\\{f(-x)≤f(1)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{lnx}{x}$,g(x)=x2-(a+b)x+ab,其中a<b,a,b∈R+
(1)?x∈R+,f(x)≤kx恒成立,求實(shí)數(shù)k的取值范圍;
(2)若g(e)>0,比較ab與ba的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$e=\frac{{\sqrt{2}}}{2}$,焦距為2.
(1)求橢圓C的方程;
(2)拋物線y2=2px(p>0)的焦點(diǎn)和橢圓的右焦點(diǎn)重合,過(guò)右焦點(diǎn)作斜率為1的直線交橢圓于A,B,交拋物線于C,D,求△OAB和△OCD面積之比(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,橢圓的四個(gè)頂點(diǎn)所圍成菱形的面積為$8\sqrt{2}$.
(Ⅰ)求圓的方程;
(Ⅱ)四邊形ABCD的頂點(diǎn)在橢圓C上,且對(duì)角線AC,BD均過(guò)坐標(biāo)原點(diǎn)O,若${k_{AC}}•{k_{BD}}=-\frac{1}{2}$.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍;
(2)證明:四邊形ABCD的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一果農(nóng)種植了1000棵果樹,為估計(jì)其產(chǎn)量,從中隨機(jī)選取20棵果樹的產(chǎn)量(單位:kg)作為樣本數(shù)據(jù),得到如圖所示的頻率分布直方圖.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹棵數(shù)為8,.
(Ⅰ)求頻率分布直方圖中a,b的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)這20棵果樹產(chǎn)量的中位數(shù);
(Ⅲ)根據(jù)頻率分布直方圖,估計(jì)這1000棵果樹的總產(chǎn)量.

查看答案和解析>>

同步練習(xí)冊(cè)答案