14.函數(shù)y=$\frac{1}{{|{x-2}|}}+\sqrt{6-x-{x^2}}$的定義域為[-3,2).

分析 根據函數(shù)y的解析式,列出使解析式有意義的不等式組,求出解集即可.

解答 解:∵函數(shù)y=$\frac{1}{{|{x-2}|}}+\sqrt{6-x-{x^2}}$,
∴$\left\{\begin{array}{l}{|x-2|≠0}\\{6-x{-x}^{2}≥0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x≠2}\\{(x+3)(x-2)≤0}\end{array}\right.$,
即-3≤x<2,
∴y的定義域為[-3,2).
故答案為:[-3,2).

點評 本題考查了利用函數(shù)的解析式求函數(shù)定義域的應用問題,也考查了不等式組的解法與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.若不等式x2+2(a-2)x+4>0對一切x∈R恒成立,則a的取值范圍是(0,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如圖,棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn)為A1C1上的動點,且EF=$\frac{1}{2}$,則下列結論中錯誤的是(  )
A.BD⊥CE
B.△CEF的面積為定值
C.四面體BCEF的體積隨EF的位置的變化而變化
D.直線BE與CF為異面直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.光線從點(-1,3)射向x軸,經過x軸反射后過點(0,2),則入射光線所在的直線的斜率是-5;

反射光線所在的直線方程是5x-y+2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知sinα+cosα=$\frac{1}{2}$,α∈(0,π),則$\frac{1-tanα}{1+tanα}$=( 。
A.$\sqrt{7}$B.-$\sqrt{7}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若a>0,b>0,化簡成指數(shù)冪的形式:$\frac{\root{3}{{a}^{2}b}•\sqrt{ab}}{\sqrt{a^{5}}}$=${a}^{\frac{2}{3}}•^{-\frac{5}{3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.將a=($\frac{7}{6}$)${\;}^{\frac{1}{2}}$,b=($\frac{6}{5}$)${\;}^{\frac{1}{2}}$,c=($\frac{6}{7}$)-${\;}^{\frac{1}{3}}$這三個數(shù)從小到大排列正確的是(  )
A.c<a<bB.c<b<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知定義域為R的奇函數(shù)f(x),當x>0時,f(x)=x2-3.
(1)當x<0時,求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在R上的解析式;
(3)解方程f(x)=2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)y=f(x)的定義域為[-1,1],則y=f(lnx)的定義域為[$\frac{1}{e},e$].

查看答案和解析>>

同步練習冊答案