分析 (1)根據(jù)偶函數(shù)的性質(zhì)得sin(-2x+φ)=sin(2x+φ),使用誘導公式得出φ;
(2)利用余弦函數(shù)的圖象與性質(zhì)列出不等式或等式求出對稱中心和單調(diào)區(qū)間.
解答 解:(1)∵f(x)=sin(2x+φ)是偶函數(shù),
∴f(-x)=sin(-2x+φ)=sin(2x+π-φ)=f(x)=sin(2x+φ),
∴π-φ-φ=2kπ,即φ=$\frac{π(1-2k)}{2}$,k∈Z.
∵-π<φ<0,∴當k=1時,φ=-$\frac{π}{2}$.
(2)由(1)得f(x)=sin(2x-$\frac{π}{2}$)=-cos2x.
令2x=$\frac{π}{2}+kπ$得x=$\frac{π}{4}+\frac{kπ}{2}$,∴f(x)的對稱中心是($\frac{π}{4}+\frac{kπ}{2}$,0),k∈Z.
令-π+2kπ≤2x≤2kπ.解得-$\frac{π}{2}+kπ$≤x≤kπ.
∴f(x)的單調(diào)減區(qū)間是[-$\frac{π}{2}+kπ$,kπ],k∈Z.
點評 本題考查了三角函數(shù)的恒等變換,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{p}{2}$,0) | B. | (p,0) | C. | (2p,0) | D. | (3p,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com