如圖,平行四邊形ABCD中,AE:EB=1:2,△AEF的面積為1cm2,則平行四邊形ABCD的面積為
 
cm2
考點(diǎn):平行線分線段成比例定理
專題:演繹法
分析:由四邊形ABCD為平行四邊形,易判斷出△AEF與△CDF相似,進(jìn)而可得△AEF與△ABC的面積的比,結(jié)合△AEF的面積等于1cm2,即可求出平行四邊形ABCD的面積.
解答: 解:∵AE∥CD,∴△AEF∽△CDF,
∴AE:CD=AF:CF,
∵AE:EB=1:2,
∴AE:AB=AE:CD=1:3,
∴AF:CF=1:3,
∴AF:AC=1:4,
∴△AEF與△ABC的高的比為1:4,
∴△AEF與△ABC的面積的比為1:12,
∴△AEF與平行四邊形ABCD的面積的比為1:24,
∵△AEF的面積等于1cm2,
∴平行四邊形ABCD的面積等于24cm2
故答案為:24.
點(diǎn)評:本題考查相似三角形的判定,考查平行四邊形面積的計(jì)算,判斷出△AEF與△CDF相似,確定△AEF與△ABC的面積的比是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知甲、乙兩種不同品牌的PVC管材都可截成A、B、C三種規(guī)格的成品配件,且每種PVC管同時(shí)截得三種規(guī)格的成品個(gè)數(shù)如下表:
A規(guī)格成品(個(gè)) B規(guī)格成品(個(gè)) C規(guī)格成品(個(gè))
品牌甲(根) 2 1 1
品牌乙(根) 1 1 2
現(xiàn)在至少需要A、B、C三種規(guī)格的成品配件分別是6個(gè)、5個(gè)、6個(gè),若甲、乙兩種PVC管材的價(jià)格分別是20元/根、15元/根,則完成以上數(shù)量的配件所需的最低成本是(  )
A、70元B、75元
C、80元D、95元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的奇函數(shù),對x∈R都有f(x+4)=f(x)+f(2)成立,若f(1)=2,則f(2014)等于(  )
A、2014B、2C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=1-x,則關(guān)于x的方程f(x)=log9(x+1)解的個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在[-6,9]內(nèi)任取一個(gè)實(shí)數(shù)m,設(shè)f(x)=-x2+mx+m,則函數(shù)f(x)的圖象與x軸有公共點(diǎn)的概率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
5
x5-x4-4x3+7的極值點(diǎn)的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在R上定義運(yùn)算:對x、y∈R,有x⊕y=2x+y,如果a⊕(3b)=1,(ab>0),則
1
a
⊕(
1
3b
)
的最小值是( 。
A、4
B、
32
3
C、9
D、
28
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)在(-1,1)上有定義,f(
1
2
)=1
,且滿足x,y∈(-1,1)時(shí)有f(x)-f(y)=f(
x-y
1-xy
)
,數(shù)列{xn}滿足x1=
1
2
xn+1=
2xn
1+xn2

(1)求f(0)的值,并證明f(x)在(-1,1)上為奇函數(shù);
(2)探索f(xn+1)與f(xn)的關(guān)系式,并求f(xn)的表達(dá)式;
(3)是否存在自然數(shù)m,使得對于任意的n∈N*,
1
f(x1)
+
1
f(x2)
+…+
1
f(xn)
m-8
4
恒成立?若存在,求出m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好落在正方形與曲線y=
x
圍成的區(qū)域內(nèi)(陰影部分)的概率為(  )
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

同步練習(xí)冊答案