8.設(shè)cos2014°=m,則sin2014°=(  )
A.$\sqrt{1-{m}^{2}}$B.-$\sqrt{{m}^{2}-1}$C.$±\sqrt{1-{m}^{2}}$D.-$\sqrt{1-{m}^{2}}$

分析 由已知及誘導(dǎo)公式可求cos34°=-m,根據(jù)同角三角函數(shù)基本關(guān)系式可求sin34°=$\sqrt{1-{m}^{2}}$,利用誘導(dǎo)公式化簡(jiǎn)所求,即可計(jì)算得解.

解答 解:∵cos2014°=cos(360°×5+180°+34°)=-cos34°=m,
∴cos34°=-m,
∴sin34°=$\sqrt{1-{m}^{2}}$,
∴則sin2014°=(360°×5+180°+34°)=-sin34°=-$\sqrt{1-{m}^{2}}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)P(1,$\frac{3}{2}$)在橢圓上;
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)點(diǎn)P(x,y)在橢圓C上運(yùn)動(dòng)時(shí),點(diǎn)Q($\frac{\sqrt{3}x}{3}$,$\frac{2y}{3}$)在曲線S上運(yùn)動(dòng),求曲線S的軌跡方程,并指出該曲線是什么圖形;
(3)過(guò)橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}-\frac{5}{3}}$=1上異于其頂點(diǎn)的任意一點(diǎn)Q作曲線S的兩條切線,切點(diǎn)分別為M,N(M,N不在坐標(biāo)軸上),若直線MN在x軸,y軸的截距分別為m,n,試問(wèn):$\frac{1}{3{m}^{2}}$+$\frac{1}{{n}^{2}}$是否為定值?若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若直線2ax+by-1=0(a>-1,b>0)經(jīng)過(guò)曲線y=cosπx+1(0<x<1)的對(duì)稱中心,則$\frac{1}{a+1}$+$\frac{2}$的最小值為$\frac{3+2\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)a>0,b>0,且a+b=$\frac{1}{a}+\frac{1}$
(1)證明:a+b≥2;
(2)a2+a≤2,求b2+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若${C}_{n}^{13}$=${C}_{n}^{7}$,則${C}_{n}^{18}$=190.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知f(sinx)=1-$\frac{1}{2}$cos2x,則f($\frac{1}{2}$)的值為( 。
A.$\frac{3}{4}$B.$\frac{5}{4}$C.$\frac{3}{4}$或$\frac{5}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.求點(diǎn)P(4,5)關(guān)于M(3,-2)對(duì)稱的點(diǎn)Q的坐標(biāo)(2,-9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知一個(gè)扇形的半徑為5cm,圓心角為2弧度,則這個(gè)扇形的面積為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.f(x)=(sinx-cosx)2-1最小正周期為π.

查看答案和解析>>

同步練習(xí)冊(cè)答案