4.將某正方體工件進(jìn)行切削,把它加工成一個(gè)體積盡可能大的新工件,新工件的三視圖如圖所示,則原工件材料的利用率為〔材料的利用率=$\frac{新工件的體積}{原工件的體積}$〕( 。
A.$\frac{7}{8}$B.$\frac{6}{7}$C.$\frac{5}{6}$D.$\frac{4}{5}$

分析 設(shè)正方體的棱長為1,根據(jù)切削部分為三棱錐,求出剩余部分的體積,可得答案.

解答 解:如圖,不妨設(shè)正方體的棱長為1,

則切削部分為三棱錐A-A1B1D1,
其體積為$\frac{1}{6}$,
又∵正方體的體積為1,
則剩余部分(新工件)的體積為$\frac{5}{6}$,
故選C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知0$<α<\frac{π}{2}$<β<π,且sin(α+β)=$\frac{5}{13}$,tan$\frac{α}{2}$=$\frac{1}{2}$.
(1)求cosα的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若四面體SABC中,三組對棱分別相等,且長分別為$\sqrt{34}$,$\sqrt{41}$,5.則此四面體的體積為( 。
A.20B.18C.16D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知{an}是遞增數(shù)列,對于任意的正整數(shù)n均有an=n2+λn恒成立,則實(shí)數(shù)λ的取值范圍是(  )
A.[-2,+∞)B.(-3,+∞)C.RD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知半圓:x2+y2=1(y≥0),點(diǎn)A(2,0),若正三角形ABC在半圓上運(yùn)動(dòng),求點(diǎn)C的軌跡,并求|OC|的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若p:x(x-3)<0是q:2x-3<m的充分不必要條件,則實(shí)數(shù)m的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知三棱錐O-ABC的頂點(diǎn)A,B,C都在半徑為2的球面上,O是球心,∠AOB=120°,當(dāng)△AOC與△BOC的面積之和最大時(shí),三棱錐O-ABC的體積為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知三棱錐的底面是邊長為1的正三角形,其正視圖與俯視圖如圖所示,且滿足$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow 0$,其外接球的表面積為$\frac{16π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對任意的實(shí)數(shù)x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的圖象關(guān)于x=1對稱,且f(0)=2,則f(2015)+f(2016)=( 。
A.0B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案