10.碳-14的半衰期為5730年,古董市場有一幅達(dá)•芬奇(1452~1519)的繪畫,2009年測得其碳-14的含量為原來的94.1%,根據(jù)這個(gè)信息,請你從時(shí)間上判斷這幅畫是不是贗品.(提示:只要用儀器測出文物中現(xiàn)有的碳-14的含量,再與它原始的碳-14水平相比,就能進(jìn)行文物的年度鑒定.)

分析 設(shè)這幅畫的年齡為,畫中原來碳-14含量為,根據(jù)題意有0.941a=a($(\frac{1}{2})^{\frac{x}{5730}}$,解得x=503,

解答 解:設(shè)這幅畫的年齡為,畫中原來碳-14含量為,根據(jù)題意有:
   0.941a=a($(\frac{1}{2})^{\frac{x}{5730}}$,
消去a后,兩邊取常用對數(shù),得lg0.941=$\frac{x}{5730}$lg0.5
解得x=5730×$\frac{lg0.941}{lg0.5}$≈503.
因?yàn)?009-503=1506
時(shí)間上能吻合.

點(diǎn)評 本題考查了對數(shù)函數(shù)的實(shí)際應(yīng)用屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知奇函數(shù)y=f(x)定義域是R,當(dāng)x≥0時(shí),f(x)=x(1-x).
(1)求出函數(shù)y=f(x)的解析式;
(2)寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間.(不用證明,只需直接寫出遞增區(qū)間即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)是定義在[-6,6]上的偶函數(shù),且f(x)在[-6,0]上是增函數(shù),則滿足f(x)<f(2x-3)的取值范圍是(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{{\sqrt{3-ax}}}{a-1}$(a≠1).
(1)若f(x)在x=2處有意義,則實(shí)數(shù)a的取值范圍是$(-∞,1)∪(1,\frac{3}{2}]$;
(2)若f(x)在區(qū)間(0,1)上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,0)∪(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知A={y|y=2x,x∈R},B={y|y=x2,x∈R},則A∩B=(  )
A.{(0,0),(2,4)}B.{0,4}C.[0,+∞)D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

兩數(shù)之間插入5個(gè)數(shù),使他們與組成等差數(shù)列,則該數(shù)列的公差為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=2x+3x-7,g(x)=lnx+2x-6,若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則( 。
A.f(b)<0<g(a)B.g(a)<0<f(b)C.f(b)<g(a)<0D.0<g(a)<f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若數(shù)列{an}滿足an+1=an+lg2,且a1=1,則其通項(xiàng)公式an=1+(n-1)lg2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=3x|log${\;}_{\frac{1}{3}}$x|-2的圖象與x軸交點(diǎn)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案