分析 (1)當(dāng)x<0時(shí),-x>0,根據(jù)已知可求得f(-x),根據(jù)奇函數(shù)的性質(zhì)f(x)=-f(-x)即可求得f(x)的表達(dá)式.
(2)結(jié)合二次函數(shù)的圖象和性質(zhì),可得分段函數(shù)的單調(diào)遞增區(qū)間.
解答 解:(1)當(dāng)x<0時(shí),-x>0,
∴f(-x)=-x(1+x).…(3分)
又因?yàn)閥=f(x)是奇函數(shù)
所以f(x)=-f(-x)x(1+x).…(6分)
綜上f(x)=$\left\{\begin{array}{l}x(1-x),x≥0\\ x(1+x),x<0\end{array}\right.$…(8分)
(2)函數(shù)y=f(x)的單調(diào)遞增區(qū)間是[$-\frac{1}{2}$,$\frac{1}{2}$]…(12分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),難度不大,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
φx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{12}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ | ||
Asin(φx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16π | B. | 20π | C. | 24π | D. | 32π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com