分析 如圖先用所給的角將矩形的面積表示出來,建立三角函數(shù)模型,再根據(jù)所建立的模型利用三角函數(shù)的性質(zhì)求最值.
解答 解:如圖,在Rt△OCB中,設(shè)∠COB=α,則OB=cosα,BC=sinα,
在Rt△OAD中,$\frac{DA}{OA}$=tan60°=$\sqrt{3}$,所以O(shè)A=$\frac{\sqrt{3}}{3}$DA=$\frac{\sqrt{3}}{3}$sinα.
∴AB=OB-OA=cosα-$\frac{\sqrt{3}}{3}$sinα.
設(shè)矩形ABCD的面積為S,則S=AB•BC=(cosα-$\frac{\sqrt{3}}{3}$sinα)sinα
=sinαcosα-$\frac{\sqrt{3}}{3}$sin2α
=$\frac{1}{2}$sin2α+$\frac{\sqrt{3}}{6}$cos2α-$\frac{\sqrt{3}}{6}$
=$\frac{\sqrt{3}}{3}$($\frac{\sqrt{3}}{2}$sin2α+$\frac{1}{2}$cos2α)-$\frac{\sqrt{3}}{6}$
=$\frac{\sqrt{3}}{3}$sin(2α+$\frac{π}{6}$)-$\frac{\sqrt{3}}{6}$.
由于0<α<$\frac{π}{3}$,所以當(dāng)2α+$\frac{π}{6}$=$\frac{π}{2}$,即α=$\frac{π}{6}$時,S最大=$\frac{\sqrt{3}}{3}$-$\frac{\sqrt{3}}{6}$=$\frac{\sqrt{3}}{6}$.
因此,當(dāng)α=$\frac{π}{6}$時,矩形ABCD的面積最大,最大面積為$\frac{\sqrt{3}}{6}$.
點評 本題考查在實際問題中建立三角函數(shù)模型,求解問題的關(guān)鍵是根據(jù)圖形建立起三角模型,將三角模型用所學(xué)的恒等式變換公式進(jìn)行化簡,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $1-\frac{π}{2}$ | C. | $\frac{π}{4}$ | D. | $1-\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 0 | D. | -i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com