分析 (1)通過(guò)代入f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0)可知數(shù)列{an}是首項(xiàng)為1、公差為$\frac{2}{3}$的等差數(shù)列,進(jìn)而計(jì)算可得結(jié)論;
(2)通過(guò)(1)裂項(xiàng)可知$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{9}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),進(jìn)而并項(xiàng)相加可知Sn=$\frac{3n}{2n+3}$,從而問(wèn)題轉(zhuǎn)化為求$\frac{4{n}^{2}}{2n+3}$的最小值,通過(guò)利用導(dǎo)數(shù)可知g(x)=$\frac{4{x}^{2}}{2x+3}$(x>0)的單調(diào)性,計(jì)算即得結(jié)論.
解答 解:(1)∵f(x)=$\frac{2}{3}$+$\frac{1}{x}$(x>0),an=f($\frac{1}{{a}_{n-1}}$),
∴an+1-an=$\frac{2}{3}$,
又∵a1=1,
∴數(shù)列{an}是首項(xiàng)為1、公差為$\frac{2}{3}$的等差數(shù)列,
∴其通項(xiàng)公式an=1+(n-1)$\frac{2}{3}$=$\frac{2n+1}{3}$;
(2)由(1)可知:$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{9}{(2n+1)(2n+3)}$=$\frac{9}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
∴Sn=$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n-1}}$
=$\frac{9}{2}$[($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{2n+1}$-$\frac{1}{2n+3}$)]
=$\frac{9}{2}$($\frac{1}{3}$-$\frac{1}{2n+3}$)
=$\frac{3n}{2n+3}$,
則Sn≥$\frac{3t}{4n}$恒成立等價(jià)于$\frac{3n}{2n+3}$≥$\frac{3t}{4n}$,即t≤$\frac{4{n}^{2}}{2n+3}$恒成立,
令g(x)=$\frac{4{x}^{2}}{2x+3}$(x>0),則g′(x)=$\frac{8x(x+3)}{(2x+3)^{2}}$>0,
∴函數(shù)g(x)=$\frac{4{x}^{2}}{2x+3}$(x>0)為增函數(shù),
∵當(dāng)n=1時(shí)$(\frac{4{n}^{2}}{2n+3})_{min}$=$\frac{4}{5}$,
∴t≤$\frac{4}{5}$,即實(shí)數(shù)t的取值范圍是:(-∞,$\frac{4}{5}$].
點(diǎn)評(píng) 本題是一道關(guān)于數(shù)列與不等式的綜合題,涉及裂項(xiàng)相消法,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{35}{3}$ | B. | 12 | C. | 16 | D. | $\frac{40}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 23 | C. | 32 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com