2.觀察以下各式:cos6°cos54°cos66°=$\frac{1}{4}$cos18°,cos19°cos41°cos79°=$\frac{1}{4}$cos57°,cos27°cos33°cos87°=$\frac{1}{4}$cos81°.
(1)分析上述各式的共同特點,寫出一個能反映一般規(guī)律的等式;
(2)證明你寫出的等式.

分析 (1)利用條件,可得一般規(guī)律的等式;
(2)利用和差的余弦公式,結(jié)合二倍角公式證明等式.

解答 解:(1)由題意,cosαcos(60°-α)cos(60°+α)=$\frac{1}{4}$cos3α.
(2)左邊=cosα($\frac{1}{2}$cosα+$\frac{\sqrt{3}}{2}$sinα)($\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα)=$\frac{1}{4}cosα$(cos2α-$\frac{3}{4}$sin2α)
右邊=$\frac{1}{4}cosα$cos2α+$\frac{1}{4}$sinαsin2α=$\frac{1}{4}cosα$(cos2α-sin2α+$\frac{1}{4}$sin2α)=$\frac{1}{4}cosα$(cos2α-$\frac{3}{4}$sin2α).
∴cosαcos(60°-α)cos(60°+α)=$\frac{1}{4}$cos3α.

點評 本題考查類比推理,考查對于所給的式子的理解,從所給式子出發(fā),通過觀察、類比、猜想出一般規(guī)律,著重考查了類比的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.設m,n∈(0,+∞),若直線(m+2)x+(n+2)y-4=0與圓(x-1)2+(y-1)2=1相切,則m+n的最小值是(  )
A.4+4$\sqrt{2}$B.2+2$\sqrt{2}$C.4+$\sqrt{2}$D.4+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知全集I={1,2,3,4,5,6},集合A={3,4,5},B={1,5,6},則圖中陰影部分表示的集合是( 。
A.{2,3,4}B.{2,3,4,5}C.{3,4}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)g(x)=sinx•log2($\sqrt{{x}^{2}+t}$+x)為偶函數(shù),則t=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設命題p:?n∈N,n2>2n,則¬p為(  )
A.?n∈N,n2≤2nB.?n∈N,n2<2nC.?n∈N,n2≤2nD.?n∈N,n2<2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題錯誤的是( 。
A.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β
B.如果平面α⊥平面β,那么平面α內(nèi)一定存在直線平行于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ
D.如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知ABCD-A1B1C1D1為正方體,E、F分別是AB、B1C1的中點.
(1)求證:直線EF∥平面ACC1A1
(2)求直線BC1與平面ACC1A1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知圓O1:x2+y2-4x+4y-41=0,圓O2:(x+1)2+(y-2)2=4,則兩圓的位置關系為( 。
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知直線l1:4x-3y+16=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1的距離為d1,動點P到直線l2的距離為d2,則d1+d2的最小值為4.

查看答案和解析>>

同步練習冊答案