A. | -1 | B. | 1 | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |
分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,從而求得要求式子的值.
解答 解:根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象,
可得A=2,$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{5}{6}$-$\frac{1}{3}$,求得ω=π.
再根據(jù)五點(diǎn)法作圖可得π•$\frac{1}{3}$+φ=$\frac{π}{2}$,求得φ=$\frac{π}{6}$,故f(x)=2sin(πx+$\frac{π}{6}$).
把f(x)的圖象上各點(diǎn)向左平移$\frac{1}{2}$單位,得到函數(shù)g(x)=2sin[π(x+$\frac{1}{2}$)+$\frac{π}{6}$]=2cos(πx+$\frac{π}{6}$)的圖象,
則g($\frac{5}{2}$)=2cos($\frac{5π}{2}$+$\frac{π}{6}$)=2cos$\frac{2π}{3}$=-1,
故選:A.
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1-i | B. | -1+i | C. | 1+i | D. | -1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com