分析 (1)利用余弦定理列方程解出;
(2)根據(jù)正弦定理用θ表示出BN,BM,使用和角公式化簡(jiǎn)L,根據(jù)θ的范圍和正弦函數(shù)的性質(zhì)得出L的最大值.
解答 解:(1)設(shè)BM=x,則BN=x-4,MN=x+4,
在△MBN中,由余弦定理得MN2=BN2+BM2-2BN•BMcosB,
即(x+4)2=(x-4)2+x2+x(x-4),解得x=10.
∴MN=x+4=14(千米).
(2)∠BMN=60°-θ,
由正弦定理得$\frac{BM}{sinθ}=\frac{BN}{sin(60°-θ)}=\frac{MN}{sin120°}$=8$\sqrt{3}$,
∴BM=8$\sqrt{3}$sinθ,BN=8$\sqrt{3}$sin(60°-θ)
∴L=BM+BN+MN=8$\sqrt{3}$sinθ+8$\sqrt{3}$sin(60°-θ)+12=12cosθ+4$\sqrt{3}$sinθ+12=8$\sqrt{3}$sin(θ+60°)+12.
∵0<θ<60°,∴60°<θ+60°<120°.
∴當(dāng)θ+60°=90°時(shí),L取得最大值8$\sqrt{3}+12$千米.
點(diǎn)評(píng) 本題考查了正余弦定理在解三角形中的應(yīng)用,三角函數(shù)的恒等變換,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com