13.以模型y=cekx去擬合一組數(shù)據(jù)時,為了求出回歸方程,設z=lny,其變換后得到線性回歸方程z=0.3x+4,則c=( 。
A.0.3B.e0.3C.4D.e4

分析 我們根據(jù)對數(shù)的運算性質:loga(MN)=logaM+logaN,logaNn=nlogaN,即可得出結論.

解答 解:∵y=cekx,
∴兩邊取對數(shù),可得lny=ln(cekx)=lnc+lnekx=lnc+kx,
令z=lny,可得z=lnc+kx,
∵z=0.3x+4,
∴l(xiāng)nc=4,
∴c=e4
故選:D.

點評 本題考查的知識點是線性回歸方程,其中熟練掌握對數(shù)的運算性質,是解答此類問題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.給出下列結論:①命題“?x∈R,sinx≠1”的否定是“?x∈R,sinx=1”;
②要得到函數(shù)y=sin($\frac{x}{2}$-$\frac{π}{4}$)的圖象,只需將y=sin$\frac{x}{2}$的圖象向右平移$\frac{π}{4}$個單位;
③數(shù)列{an}滿足“an+1=3an”是“數(shù)列{an}為等比數(shù)列”的充分不必要條件;
④命題“若x=y,則sinx=siny”的逆否命題為真命題.其中正確的是(  )
A.①②④B.①③C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若函數(shù)f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{2}x,x>2}\end{array}\right.$的值域為[4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)f(x)=|1-x|-|x-3|,x∈R的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若x<0,則ln(x+1)<0的否命題是若x≥0,則ln(x+1)≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=x2-ax+a(x∈R),在定義域內有且只有一個零點,存在0<x1<x2,使得不等式f(x1)>f(x2)成立. 若n∈N*,f(n)是數(shù)列{an}的前n項和.設各項均不為零的數(shù)列{cn}中,所有滿足ck•ck+1<0的正整數(shù)k的個數(shù)稱為這個數(shù)列{cn}的變號數(shù),令cn=1-$\frac{4}{{a}_{n}}$,則數(shù)列{cn}的變號數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)y=x2+(2a-1)x+3在[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是(  )
A.[-$\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(-∞,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,經(jīng)營中,第一年支出12萬元,以后每年支出增加4萬元,從第一年起每年蔬菜銷售收入50萬元,設f(n)表示前n年的純利潤總和(f(n)前n年總收入前n年的總支出-投資額72萬元)
(1)該廠從第幾年開始盈利?
(2)寫出年平均純利潤的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在△ABC中,角A,B,C的對邊分別為a,b,c且cos(A-B)cosB-sin(A-B)sin(A+C)=-$\frac{3}{5}$.
(1)求sinA的值;    
(2)若a=4$\sqrt{2}$,b=5,求△ABC的面積.

查看答案和解析>>

同步練習冊答案