分析 (1)連BD交AC于點(diǎn)O,連EO,EC,說明PB與EC所成角就是∠CEO,利用余弦定理求解即可.
(2)取AD的中點(diǎn)F,連EF,F(xiàn)O,根據(jù)定義可知∠EOF是二面角E-AC-D的平面角,在△EOF中求出此角.
解答 解:(1)連BD交AC于點(diǎn)O,連EO,EC,
則EO是△PDB的中位線,PB∥EO,
PB與EC所成角就是∠CEO,
AB=AC=$\frac{1}{2}$PA=1,可得AG=FC=$\frac{\sqrt{2}}{2}$,PA=2,EF=1,EC=$\sqrt{1+\frac{1}{2}}$=$\frac{\sqrt{6}}{2}$,
OE=$\sqrt{1+({\frac{1}{2})}^{2}}$=$\frac{\sqrt{5}}{2}$,OC=1,
cos∠CEO=$\frac{\frac{5}{4}+\frac{6}{4}-1}{2×\frac{\sqrt{5}}{2}×\frac{\sqrt{6}}{2}}$=$\frac{7\sqrt{30}}{60}$.
(2)連BD交AC于點(diǎn)O,連EO,EC,
則EO是△PDB的中位線,
取AD的中點(diǎn)F,連EF,F(xiàn)O,
則EF是△PAD的中位線,
∴EF∥PA又PA⊥平面ABCD,
∴EF⊥平面ABCD
同理FO是△ADC的中位線,
∴FO∥AB,F(xiàn)O⊥AC由三垂線定理可知∠EOF是二面角E-AC-D的平面角.
又FO=$\frac{1}{2}$AB=$\frac{1}{2}$PA=EF
∴∠EOF=45°,故所求二面角E-AC-D的大小為45°.
點(diǎn)評(píng) 本題主要考查了直線與平面平行的判定,異面直線所成角以及二面角等有關(guān)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ?p∧?q | C. | ?p∧q | D. | p∧?q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com