6.如圖所示的程序框圖,若輸入x,k,b,p的值分別為1,-2,9,3,則輸出x的值為( 。
A.-29B.19C.47D.-5

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計算并輸出變量x的值,模擬程序的運行,用表格對程序運行過程中各變量的值進(jìn)行分析,不難得到輸出結(jié)果.

解答 解:程序執(zhí)行過程為:n=1,x=-2×1+9=7,
n=2,x=-2×7+9=-5,
n=3,x=-2×(-5)+9=19,
n=4>3,
∴終止程序,
∴輸入x的值為19,
故選:B.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.1202年,意大利數(shù)學(xué)家斐波那契在他的書中給出了一個關(guān)于兔子繁殖的遞推關(guān)系:${F}_{n}{=}_{{F}_{n-1}}{+}_{{F}_{n-2}}$(n≥3),其中Fn表示第n個月的兔子的總對數(shù),F(xiàn)1=F2=1,則F8的值為( 。
A.13B.21C.34D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,a-b=bcosC.
(1)求證:sinC=tanB
(2)若a=2,b=2,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)D為(x-2)2+y2=4的內(nèi)部,計算$\underset{∬}{D}$y$\sqrt{{x}^{2}+{y}^{2}}$dσ=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的所有項均為正值,其前n項積為Tn=2${\;}^{\frac{n(n-1)}{2}}$
(Ⅰ)求數(shù)列{an}的通項公式
(Ⅱ)求和:Sn=a1+2a2+…+(n+2)an+2-(n+1)an+3-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列結(jié)論正確的是( 。
A.“若a>1,則a2>a”的否命題是“若a>1,則a2≤a”
B.對于定義在R上的可導(dǎo)函數(shù)f(x),“f′(x0)=0”是“x0為極值點”的充要條件
C.“若tanα$≠\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題
D.,?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.用0,1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),比40000大的奇數(shù)共有( 。
A.72B.90C.120D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在一次詩詞知識競賽調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:20~30;30~40(單位:歲),其中答對詩詞名句與否的人數(shù)如圖所示.
(Ⅰ)完成下面的2×2列聯(lián)表;判斷是否有90%的把握認(rèn)為答對詩詞名句與年齡有關(guān),請說明你的理由;(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
正確錯誤合計
20~30
30~40
合計
(Ⅱ)若計劃在這次場外調(diào)查中按年齡段分層抽樣選取6名選手,求3名選手中在20~30歲之間的人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若向量$\overrightarrow a$在向量$\vec b$方向上的投影為3,且$|{\vec b}|=4$,則$\overrightarrow a•\overrightarrow b$=(  )
A.3B.6C.12D.24

查看答案和解析>>

同步練習(xí)冊答案