11.函數(shù)y=$\sqrt{x-4}$+$\sqrt{15-3x}$,下述判斷中正確的是( 。
A.最大值是2,最小值是0B.最大值是3,最小值是2
C.最大值是3,最小值是1D.最大值是2,最小值是1

分析 求出函數(shù)的定義域,利用導數(shù)研究出函數(shù)的單調(diào)性,確定出最值的位置,求出相應(yīng)的函數(shù)值,即可得到值域

解答 解:∵y=$\sqrt{x-4}$+$\sqrt{15-3x}$,
∴$\left\{\begin{array}{l}{x-4≥0}\\{15-3x≥0}\end{array}\right.$解得4≤x≤5
又y′=$\frac{1}{2\sqrt{x-4}}$-$\frac{3}{2\sqrt{15-3x}}$=$\frac{\sqrt{15-3x}-3\sqrt{x-4}}{2\sqrt{x-4}•\sqrt{15-3x}}$
令y′>0解得4≤x<$\frac{17}{4}$,令y′<0,得$\frac{7}{4}$<x≤5,故當x=$\frac{17}{4}$函數(shù)取到最大值2
又x=4時,y=$\sqrt{3}$,x=5時,y=1
函數(shù)的值域為[1,2]
故選:D.

點評 本題考查求函數(shù)的值域,由于本題函數(shù)解析式比較特殊,單調(diào)性不易判斷出,故采取了求導的方法研究函數(shù)的單調(diào)性,確定出函數(shù)最值的位置,求出值域,解答本題關(guān)鍵是熟練掌握求導公式,以及掌握導數(shù)法確定函數(shù)單調(diào)性的步驟.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)a>b>c>0,則3a2+$\frac{1}{a(a-b)}$+$\frac{1}{ab}$-6ac+9c2的最小值為( 。
A.2B.4C.2$\sqrt{5}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)與拋物線C2:y2=$\frac{1}{2}$x在第一象限的交點A的橫坐標為2,直線l:x-2y-$\sqrt{6}$=0過橢圓的一個焦點.
(1)求橢圓C1的方程;
(2)已知直線l'平行于直線l,且與橢圓C1交于不同的兩點M,N,記直線AM的傾斜角θ1,直線AN的傾斜角為θ2,試探究θ12是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知兩定點A(-2,0)、B(1,0),如果動點P滿足|PA|=2|PB|,則點P的軌跡方程為(x-2)2+y2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知圓C1:(x-1)2+(y+1)2=1,圓C2:(x-4)2+(y-5)2=9.點M、N分別是圓C1、圓C2上的動點,P為x軸上的動點,則|PN|-|PM|的最大值是( 。
A.2$\sqrt{5}$+4B.9C.7D.2$\sqrt{5}$+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果sin(π+A)=$\frac{1}{2}$,那么cos($\frac{3π}{2}$-A)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設(shè)F1,F(xiàn)2為橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點,且|F1F2|=2c,若橢圓上存在點P使得|PF1|•|PF2|=2c2,則橢圓的離心率的最小值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知四邊形ABCD,對角線AC,BD互相垂直且內(nèi)接于圓O,AB+BC+CD+DA=8,則點O到四邊形各邊距離之和為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.雙曲線${x^2}-\frac{y^2}{3}=1$的實軸長是2,漸近線方程是y=$±\sqrt{3}$x.

查看答案和解析>>

同步練習冊答案