14.已知函數(shù)f(x)=lgx,若f(a-1)+f(b-1)=0且a>1,b>1,則a+b的取值范圍( 。
A.[4,+∞)B.(4,+∞)C.(0,$\frac{1}{4}$]D.[2,+∞)

分析 根據(jù)f(a-1)+f(b-1)=0且a>1,b>1,得到ab=a+b,根據(jù)級(jí)別不等式的性質(zhì)得到ab(ab-4)≥0,解出即可.

解答 解:f(a-1)+f(b-1)=lg(a-1)+lg(b-1)=lg(a-1)(b-1)=0,
∴(a-1)(b-1)=1,
∴ab=a+b,
而ab=a+b≥2$\sqrt{ab}$,
∴ab(ab-4)≥0,
解得:ab≥4,
即a+b≥4,
故選:A.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì),考查基本不等式的性質(zhì),求出ab=a+b是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.給出下列四個(gè)結(jié)論:
①元素個(gè)數(shù)不同的兩數(shù)集之間可以構(gòu)建一一映射;
②如果一個(gè)函數(shù)的圖象關(guān)于y鈾對(duì)稱,則這個(gè)函數(shù)為偶函數(shù);
③若函數(shù)f(x)是奇函數(shù),則f(x)•f(-x)≥0;
④方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0
其中正確結(jié)論的序號(hào)是②④(請(qǐng)把所有正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知p:m∈(-2,-1),q:m滿足$\frac{x^2}{2+m}-\frac{y^2}{m+1}=1$表示橢圓,那么p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角α的終邊經(jīng)過點(diǎn)(-6,8),則cosα=( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某市期末教學(xué)質(zhì)量檢測(cè),甲、乙、丙三科考試成績(jī)近似服從正態(tài)分布,則由如圖曲線可得下列說法中錯(cuò)誤的是(  )
A.甲、乙、丙的總體的均值都相同B.甲學(xué)科總體的方差最小
C.乙學(xué)科總體的方差及均值都居中D.丙學(xué)科總體的方差最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知l,m是兩條不同的直線,α,β是兩個(gè)不同的平面,給出下列條件:
①α∩β=l,m與α、β所成角相等
②α⊥β,l⊥α,m∥β
③l,m與平面α所成角之和為90°
④α∥β,l⊥α,m∥β
⑤PA⊥α于A,P∈l,l∩α=B(B不同于P),m?α,AB⊥m
其中可判斷l(xiāng)⊥m的條件的序號(hào)是④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線Ax+By+C=0不經(jīng)過第三象限,則A,B,C應(yīng)滿足   (  )
A.AB>0,BC>0B.AB>0,BC<0C.AB<0,BC>0D.AB<0,BC<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,已知Sn+an=-n(n∈N*)恒成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=$\left\{\begin{array}{l}ln({a_n}+1),\;n為奇數(shù)\\{a_n}\;\;\;\;\;\;\;\;,n為偶數(shù)\end{array}$,求{bn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若正數(shù)x,y滿足x+3y=5xy,求:
(1)3x+4y的最小值;
(2)求xy的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案