13.已知等差數(shù)列{an}的首項a1=1,公差d>0,數(shù)列{bn}是等比數(shù)列,且b2=a2,b3=a5,b4=a14
(I)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}對任意正整數(shù)n,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$成立,求c1+c2+…+c2014的值.

分析 (Ⅰ)通過a2,a5,a14成等比數(shù)列計算可知d=2,進(jìn)而計算可得結(jié)論;
(Ⅱ)通過(I)計算可知c1=3,利用$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$與$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n-1}}{_{n-1}}$=an作差,進(jìn)而計算可得數(shù)列{cn}的通項公式,進(jìn)而計算可得結(jié)論.

解答 解:(Ⅰ)∵a2=1+d,a5=1+4d,a14=1+13d,且a2,a5,a14成等比數(shù)列,
∴(1+4d)2=(1+d)(1+13d),
解得:d=2,
∴an=1+2(n-1)=2n-1,
又∵b2=a2=3,b3=a5=9,
∴q=3,b1=1,
∴bn=3n-1
(Ⅱ)∵$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$,
∴$\frac{{c}_{1}}{_{1}}$=a2,即c1=b1a2=3,
又∵$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$,
當(dāng)n≥2時,$\frac{{c}_{1}}{_{1}}$+$\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n-1}}{_{n-1}}$=an
∴$\frac{{c}_{n}}{_{n}}$=an+1-an=2,cn=2bn=2•3n-1(n≥2),
∴cn=$\left\{\begin{array}{l}{3,}&{n=1}\\{2•{3}^{n-1},}&{n≥2}\end{array}\right.$,
∴c1+c2+…+c2014=3+2•31+2•32+…+2•32013
=3+2(31+32+…+32013
=3+2•$\frac{3(1-{3}^{2013})}{1-3}$
=32014

點評 本題考查數(shù)列的通項及前n項和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow{AM}=-3\overrightarrow{MB}$,O為平面內(nèi)任意一點,則下列各式成立的是( 。
A.$\overrightarrow{OM}=-\frac{1}{2}\overrightarrow{OA}+\frac{3}{2}\overrightarrow{OB}$B.$\overrightarrow{OM}=-\overrightarrow{OA}+2\overrightarrow{OB}$C.$\overrightarrow{OM}=2\overrightarrow{OA}-\overrightarrow{OB}$D.$\overrightarrow{OM}=\frac{3}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和${s_n}=32n-{n^2}$,
(1)求數(shù)列{an}的通項公式;    
(2)求數(shù)列{an}的前多少項和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2004 年世界衛(wèi)生組織、聯(lián)合國兒童基金會等機(jī)構(gòu)將青蒿素作為一線抗瘧藥品推廣.2015 年12 月10 日,我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎.目前,國內(nèi)青蒿人工種植發(fā)展迅速.
某農(nóng)科所為了深入研究海拔因素對青蒿素產(chǎn)量的影響,在山上和山下的試驗田中分別種植了100 株青蒿進(jìn)行對比試驗.現(xiàn)在從山上和山下的試驗田中各隨機(jī)選取了4株青蒿作為樣本,每株提取的青蒿素產(chǎn)量(單位:克)如表所示:
 編號
位置
 ① ② ③ ④
 山上 5.0 3.8 3.6 3.6
 山下 3.6 4.4 4.4 3.6
(Ⅰ)根據(jù)樣本數(shù)據(jù),試估計山下試驗田青蒿素的總產(chǎn)量;
(Ⅱ)記山上與山下兩塊試驗田單株青蒿素產(chǎn)量的方差分別為$s_1^2$,$s_2^2$,根據(jù)樣本數(shù)據(jù),試估計$s_1^2$與$s_2^2$的大小關(guān)系(只需寫出結(jié)論);
(Ⅲ)從樣本中的山上與山下青蒿中各隨機(jī)選取1 株,記這2 株的產(chǎn)量總和為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,角A,B,C對應(yīng)的邊分別為a,b,c.若a2=(b+c)2-bc,則A$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從所有棱長均為2的正四棱錐的5個頂點中任取3個點,設(shè)隨機(jī)變量ξ表示這三個點所構(gòu)成的三角形的面積,則其數(shù)學(xué)期望Eξ=$\frac{2\sqrt{3}+6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.口袋中有5個小球,其中兩個黑球三個白球,從中隨機(jī)取出兩個球,則在取到的兩個球同色的條件下,取到的兩個球都是白球的概率( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\frac{x}{cosx}$,x∈(-$\frac{π}{2},\frac{π}{2}$),當(dāng)|xi|<$\frac{π}{2}$(i=1,2,3)時,f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,則有( 。
A.x1+x2+x3>0B.x1+x2+x3=0
C.x1+x2+x3<0D.x1+x2+x3的符號不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)f(x)=2cos2x+4asinx+a-3.
(1)若x∈R時,f(x)的最大值為1,求a的值;
(2)若關(guān)于x的方程f(x)=0在區(qū)間[0,π]上有兩個不同的實數(shù)解,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案