分析 (1)先判斷$\sqrt{c}$與c的大小,代值計算即可;
(2)根據(jù)x的范圍,分段求出,得到不等式的解集.
解答 解:(1)∵0<c<1,
∴$\sqrt{c}$>c,又f($\sqrt{c}$)=$\frac{1}{4}$,
∴2-8c=$\frac{1}{4}$=2-2,
解得c=$\frac{1}{4}$;
(2)由(1)知,f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+\frac{3}{8},0<x<\frac{1}{4}}\\{\frac{1}{4},\frac{1}{4}≤x<1}\end{array}\right.$,
∵f(x)>$\frac{1}{8}$,
當0<x<$\frac{1}{4}$,$\frac{1}{2}$x+$\frac{3}{8}$>$\frac{1}{8}$,解得0<x<$\frac{1}{4}$,
當$\frac{1}{4}$≤x<1時,f(x)>$\frac{1}{8}$恒成立,
綜上所述:不等式的解集為(0,1).
點評 本題考查指數(shù)型不等式的解法,考查分類討論思想與方程思想的綜合運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x>5是命題 | |
B. | 命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0” | |
C. | 命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題 | |
D. | “b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2}{3}π$ | C. | $\frac{4}{3}π$ | D. | $\frac{π}{3}$或$\frac{4}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com