17.已知實數(shù)x,y滿足x2+2y2+$\frac{1}{2}$≤x(2y+1),則2x+log2y=1.

分析 實數(shù)x,y滿足x2+2y2+$\frac{1}{2}$≤x(2y+1),化為(x-2y)2+(x-1)2≤0.解出x,y,代入即可得出.

解答 解:實數(shù)x,y滿足x2+2y2+$\frac{1}{2}$≤x(2y+1),
化為(x-2y)2+(x-1)2≤0.
∴$\left\{\begin{array}{l}{x=2y}\\{x=1}\end{array}\right.$,解得x=1,y=$\frac{1}{2}$.
∴2x+log2y=2-1=1.
故答案為:1.

點評 本題考查了配方法、指數(shù)與對數(shù)的運(yùn)算法則,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,梯形AOBC的頂點A,C在反比例函數(shù)圖象上,OA∥BC,上底邊OA在直線y=x上,下底邊BC交x軸于E(2,0),C點的縱坐標(biāo)為1.
(1)求反比例函數(shù)的解析式;
(2)求四邊形AOEC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的值域.
(1)y=4x-5+$\sqrt{2x-3}$;
(2)y=$\frac{3x}{{x}^{2}+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{c}x+\frac{3}{8},(0<x<c)}\\{{2}^{-8c},(c≤x<1)}}\end{array}\right.$,且滿足f($\sqrt{c}$)=$\frac{1}{4}$.

(1)求常數(shù)c的值;

(2)解不等式f(x)>$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若球面上四點P、A、B、C構(gòu)成的三條線段PA,PB,PC兩兩互相垂直,且PA=1,PB=2,PC=3,求球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)m∈N*,已知函數(shù)f(x)=(2m-m2)•x${\;}^{2{m}^{2}+3m-4}$在(0,+∞)上是增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=$\frac{[f(x)]^{2}+{λ}^{2}}{f(x)}$(λ≠0是常數(shù)),試討論g(x)在(-∞,0)上的單調(diào)性,并求g(x)在區(qū)間(-∞,0)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)是這樣定義的:對于任意整數(shù)m,當(dāng)實數(shù)x滿足不等式|x-m|<$\frac{1}{2}$時,有f(x)=m.
(1)求函數(shù)f(x)的定義域D,并畫出它在x∈D∩[0,3]上的圖象;
(2)若數(shù)列an=2+10•($\frac{2}{5}$)n,記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各組函數(shù)是相等函數(shù)的是( 。
A.y=$\frac{|x|}{x}$與 y=1B.y=$\frac{{x}^{3}+x}{{x}^{2}+1}$與y=x
C.y=x與y=($\sqrt{x}$)2D.y=|x|與y=$\left\{\begin{array}{l}{x,x>1}\\{-x,x<1}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若角α的終邊落在正比例函數(shù)y=3x的圖象上,那么tanα=3.

查看答案和解析>>

同步練習(xí)冊答案