16.以下判斷正確的是( 。
A.x>5是命題
B.命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題
D.“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件

分析 直接由命題的概念判斷A;寫出特稱命題的否定判斷B;寫出原命題的逆命題,判斷真假后判斷C;由充分必要條件的判斷方法判斷D.

解答 解:對(duì)于A,x>5沒法判斷真假,不是命題,A錯(cuò)誤;
對(duì)于B,命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1≥0”,B錯(cuò)誤;
對(duì)于C,命題“在△ABC中,若A>B,則sinA>sinB”的逆命題是“在△ABC中,若sinA>sinB,則A>B”,
若sinA>sinB成立,由正弦定理$\frac{a}{sinA}=\frac{sinB}=2R$,得a>b,即A>B.
反之,若A>B成立,∴a>b,
∵a=2RsinA,b=2RsinB,∴sinA>sinB,則sinA>sinB是A>B的充要條件,即命題“在△ABC中,若A>B,則sinA>sinB”的逆命題是真命題,C錯(cuò)誤;
對(duì)于D,若b=0,則f(x)=ax2+c是偶函數(shù),若f(x)=ax2+bx+c是偶函數(shù),則f(-x)-f(x)=0,
即ax2-bx+c-ax2-bx-c=0,∴b=0.
∴“b=0”是“函數(shù)f(x)=ax2+bx+c是偶函數(shù)”的充要條件.命題D正確.
故選:D.

點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,考查了充分必要條件的判定方法,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.不等式組$\left\{{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤4}\end{array}}\right.$,所表示的平面區(qū)域的面積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,梯形AOBC的頂點(diǎn)A,C在反比例函數(shù)圖象上,OA∥BC,上底邊OA在直線y=x上,下底邊BC交x軸于E(2,0),C點(diǎn)的縱坐標(biāo)為1.
(1)求反比例函數(shù)的解析式;
(2)求四邊形AOEC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>1,0<x<1,且${a}^{lo{g}_(1-x)}$>1,那么b的取值范圍是0<b<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一臺(tái)機(jī)器使用的時(shí)間較長(zhǎng),但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器的運(yùn)轉(zhuǎn)的速度而變化,表為抽樣試驗(yàn)的結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒)1614128
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件)11985
假設(shè)y對(duì)x有線性相關(guān)關(guān)系,求回歸直線方程;$\widehat$=$\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)÷\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果圓(x+3)2+(y-1)2=1關(guān)于直線l:mx+4y-1=0對(duì)稱,則直線l的斜率為( 。
A.4B.-4C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的值域.
(1)y=4x-5+$\sqrt{2x-3}$;
(2)y=$\frac{3x}{{x}^{2}+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{c}x+\frac{3}{8},(0<x<c)}\\{{2}^{-8c},(c≤x<1)}}\end{array}\right.$,且滿足f($\sqrt{c}$)=$\frac{1}{4}$.

(1)求常數(shù)c的值;

(2)解不等式f(x)>$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各組函數(shù)是相等函數(shù)的是( 。
A.y=$\frac{|x|}{x}$與 y=1B.y=$\frac{{x}^{3}+x}{{x}^{2}+1}$與y=x
C.y=x與y=($\sqrt{x}$)2D.y=|x|與y=$\left\{\begin{array}{l}{x,x>1}\\{-x,x<1}\end{array}\right.$

查看答案和解析>>

同步練習(xí)冊(cè)答案