20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一個(gè)周期內(nèi)的圖象如圖所示,若方程f(x)=m在區(qū)間[0,π]上有兩個(gè)不同的數(shù)解x1、x2,則x1+x2的值為(  )
A.$\frac{π}{3}$B.$\frac{2}{3}π$C.$\frac{4}{3}π$D.$\frac{π}{3}$或$\frac{4}{3}π$

分析 由圖象可得函數(shù)的解析式,由三角函數(shù)圖象的對(duì)稱性可得.

解答 解:由圖象可得A=2,$\frac{3}{4}$T=$\frac{11π}{12}$-$\frac{π}{6}$,
解得周期T=π=$\frac{2π}{ω}$,∴ω=2,
∴f(x)=2sin(2x+φ),
代入($\frac{π}{6}$,2)可得$\frac{π}{3}$+φ=$\frac{π}{2}$,解得φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$),
∵x∈[0,π],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{13π}{6}$],
結(jié)合三角函數(shù)圖象可得2x1+$\frac{π}{6}$+2x2+$\frac{π}{6}$=π或2x1+$\frac{π}{6}$+2x2+$\frac{π}{6}$=3π
∴x1+x2=$\frac{π}{3}$,或x1+x2=$\frac{4π}{3}$
故選:D

點(diǎn)評(píng) 本題考查三角函數(shù)的圖象和性質(zhì),求出函數(shù)的解析式是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合A={2,5},B={x|1≤x≤3},則A∩B={2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.一臺(tái)機(jī)器使用的時(shí)間較長,但還可以使用,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機(jī)械零件有一些會(huì)有缺點(diǎn),每小時(shí)生產(chǎn)有缺點(diǎn)零件的多少,隨機(jī)器的運(yùn)轉(zhuǎn)的速度而變化,表為抽樣試驗(yàn)的結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒)1614128
每小時(shí)生產(chǎn)有缺點(diǎn)的零件數(shù)y(件)11985
假設(shè)y對(duì)x有線性相關(guān)關(guān)系,求回歸直線方程;$\widehat$=$\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)÷\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求下列函數(shù)的值域.
(1)y=4x-5+$\sqrt{2x-3}$;
(2)y=$\frac{3x}{{x}^{2}+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知a>0且a≠1,用比較法證明:an$+\frac{1}{{a}^{n}}$>a+$\frac{1}{a}$(n>2,n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{c}x+\frac{3}{8},(0<x<c)}\\{{2}^{-8c},(c≤x<1)}}\end{array}\right.$,且滿足f($\sqrt{c}$)=$\frac{1}{4}$.

(1)求常數(shù)c的值;

(2)解不等式f(x)>$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若球面上四點(diǎn)P、A、B、C構(gòu)成的三條線段PA,PB,PC兩兩互相垂直,且PA=1,PB=2,PC=3,求球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)是這樣定義的:對(duì)于任意整數(shù)m,當(dāng)實(shí)數(shù)x滿足不等式|x-m|<$\frac{1}{2}$時(shí),有f(x)=m.
(1)求函數(shù)f(x)的定義域D,并畫出它在x∈D∩[0,3]上的圖象;
(2)若數(shù)列an=2+10•($\frac{2}{5}$)n,記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.要從已編號(hào)(1-60)的60名學(xué)生中隨機(jī)抽取6人,現(xiàn)用系統(tǒng)抽樣方法確定所選取的6個(gè)同學(xué)的編號(hào)可能是( 。
A.5,10,15,20,25,30B.2,4,8,16,32,48
C.1,2,3,4,5,6D.3,13,23,33,43,53

查看答案和解析>>

同步練習(xí)冊答案