9.某水利工程隊相應(yīng)政府號召,計劃在韓江邊選擇一塊矩形農(nóng)田,挖土以加固河堤,為了不影響農(nóng)民收入,挖土后的農(nóng)田改造成面積為32400m2的矩形魚塘,其四周都留有寬3m的路面,問所選的農(nóng)田的長和寬各為多少時,才能使占有農(nóng)田的面積最少.

分析 設(shè)魚塘的長為xm,寬為ym,農(nóng)田面積為s,則農(nóng)田長為(x+6)m,寬為(y+6)m,xy=32400,s=(x+6)•(y+6)=xy+6(x+y)+36,再由基本不等式即可得到所求最小值,及對應(yīng)的x,y的值.

解答 解:設(shè)魚塘的長為xm,寬為ym,農(nóng)田面積為s,
則農(nóng)田長為(x+6)m,寬為(y+6)m,xy=32400,
s=(x+6)•(y+6)=xy+6(x+y)+36,
∴$s═32436+6(x+y)≥32436+12\sqrt{xy}=34596$,
當且僅當x=y=180時取等號,所以當x=y=180,s=34596m2,
答:當選的農(nóng)田的長和寬都為186m時,才能使占有農(nóng)田的面積最少.

點評 本題考查基本不等式在最值問題中的運用,注意滿足的條件:一正二定三等,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知數(shù)列{an}滿足a1=1,a2n=n-an,a2n+1=an+1(n∈N*),則a1+a2+a3+…+a40等于( 。
A.222B.223C.224D.225

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在正五邊形ABCDE中,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,則該正五邊形的對角線的長為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)當0<a<1時,求證:函數(shù)f(x)在(-∞,0)上單調(diào)遞減;
(2)若函數(shù)y=|f(x)-t|-1有三個零點,求t的值;
(3)對于任意x1,x2∈[-1,1]都有,|f(x1)-f(x2)≤e-1,試求a的取值范圍.|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知A(8,0),B(0,6),O(0,0),則△AOB的外接圓的方程是(x-4)2+(y-3)2=25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項和Sn,且滿足${S_{n+1}}={n^2}-n$,則a1=( 。
A.4B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.求值:$\frac{tan49°+tan11°}{1-tan49°tan11°}$=(  )
A.tan 38°B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.過拋物線y2=8x的焦點且傾斜角為45°直線l,交拋物線于A,B兩點,則弦AB的長為(  )
A.8B.16C.24D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)計算:$lg4+2lg5+{(0.25)^{-\frac{1}{2}}}-{8^{\frac{2}{3}}}$;
(2)已知f(x)在R上是奇函數(shù),且f(x+2)=-f(x),當x∈(0,2)時,f(x)=2x2,求f(2015).

查看答案和解析>>

同步練習冊答案