4.一個棱長為12的正四面體紙盒內(nèi)放一個正方體,若正方體可以在紙盒內(nèi)任意轉(zhuǎn)動,則正方體的體積最大值是( 。
A.16$\sqrt{2}$B.6$\sqrt{2}$C.12$\sqrt{2}$D.32$\sqrt{2}$

分析 在一個棱長為12的正四面體紙盒內(nèi)放一個正方體,并且能使正方體在紙盒內(nèi)任意轉(zhuǎn)動,說明正方體在正四面體的內(nèi)切球內(nèi),求出內(nèi)切球的直徑,就是正方體的對角線的長,然后求出正方體的棱長.

解答 解:設(shè)正四面體的內(nèi)切球的半徑為:r,由正四面體的體積得:
4×$\frac{1}{3}$×r×$\frac{\sqrt{3}}{4}$×122=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×122×$\sqrt{1{2}^{2}-(\frac{2}{3}×\frac{\sqrt{3}}{2}×12)^{2}}$,
所以r=$\sqrt{6}$,
設(shè)正方體的最大棱長為a,
∴3a2=(2$\sqrt{6}$)2,
∴a=2$\sqrt{2}$,
∴正方體的體積最大值是16$\sqrt{2}$.
故選:A.

點評 本題是中檔題,考查正四面體的內(nèi)接球的知識,球的內(nèi)接正方體的棱長的求法,考查空間想象能力,轉(zhuǎn)化思想,計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c.已知cosA=$\frac{1}{4}$,a=4,b+c=6,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a>1,b>2,且ab=2a+b,則a+b的最小值為(  )
A.2$\sqrt{2}$B.2$\sqrt{2}$+1C.2$\sqrt{2}$+2D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線l:$y=x+\sqrt{6}$,圓O:x2+y2=5,橢圓E:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的離心率$e=\frac{{\sqrt{3}}}{3}$,直線l被圓O截得的弦長與橢圓的短軸長相等.
(1)求橢圓E的方程;
(2)過圓O上任意一點$P({x_0},{y_0})({x_0}≠±\sqrt{2},{y_0}≠±\sqrt{3})$作兩條直線與橢圓E分別只有唯一一個公共點,求證:這兩直線斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知正方體ABD-A1B1C1D1的棱長為2,E,F(xiàn)分別是CC1,DD1的中點,點P在矩形C1D1FE的內(nèi)部及其邊界上運動,點Q在線段AD上運動,則線段PQ中點M的軌跡所形成的幾何體的體積為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,F(xiàn)1,F(xiàn)2是橢圓的兩個焦點,則|F1F2|=2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.有一智能機器人在平面上行進中始終保持與點F(1,0)的距離和到直線x=-1的距離相等,若機器人接觸不到過點P(-1,0)且斜率為k的直線,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,平行六面體ABCD-A1B1C1D1中,AC與BD交于點M,設(shè)$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{A{A_1}}$=$\overrightarrow c$,則$\overrightarrow{{B_1}M}$=( 。
A.$-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$B.$\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$C.$\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b-\overrightarrow c$D.$-\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=x3+x2-2x-2的一個正數(shù)零點附近的函數(shù)值用二分法逐次計算,參考數(shù)據(jù)如下:f(1)=-2,f(1.5)=0.625;f(1.25)=-0.984,f(1.375)=-0.260;
f(1.438)=0.165,f(1.4065)=-0.052.
那么方程x3+x2-2x-2=0的一個近似根可以為(精確度為0.1)( 。
A.1.2B.1.35C.1.43D.1.5

查看答案和解析>>

同步練習(xí)冊答案