6.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側(cè)棱PD⊥底面ABCD,PD=DC,點E是PC的中點,作EF⊥PB交PB于點F.
(1)求證:PA∥平面BDE;
(2)求證:PB⊥平面DEF.

分析 (1)連結(jié)AC,設(shè)AC交BD于O,連結(jié)EO,則PA∥EO,由此能證明PA∥平面EO.
(2)由已知得PD⊥BC,CD⊥BC,從而BC⊥平面PDC,進而BC⊥DE,再由DE⊥PC,DE⊥PB,由此能證明PB⊥平面DEF.

解答 證明:(1)連結(jié)AC,設(shè)AC交BD于O,連結(jié)EO,
∵底面ABCD中矩形,∴點O是AC的中點,
又∵點E是PC的中點,∴PA∥EO,
∵EO?平面BDE,PA?平面BDE,
∴PA∥平面EO.
(2)PD⊥底面ABCD,BC?底面ABCD,
∴PD⊥BC,
∵底面ABCD中矩形,∴CD⊥BC,
∵PD∩CD=D,∴BC⊥平面PDC,
∵DE?平面PDC,∴BC⊥DE,
∵PD=DC,E是PC的中點,∴DE⊥PC,
∵PC∩BC=C,∴DE⊥PB,
又∵EF⊥PB,DE∩EF=E,DE?平面DEF,EF?平面DEF,
∴PB⊥平面DEF.

點評 本查線面平行的證明,考查線面垂直的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計算:
(1)$(\frac{64}{27})^{\frac{1}{3}}$+(2$\frac{7}{9}$)0.5-($\root{3}{\frac{8}{27}}$+0.027${\;}^{-\frac{1}{3}}$)${\;}^{\frac{1}{2}}$
(2)log3$\sqrt{27}$-log3$\sqrt{3}$-lg25-lg4+ln(e2)+2${\;}^{\frac{1}{2}lo{g}_{2}4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列命題中正確的個數(shù)為( 。
①線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強;反之,線性相關(guān)性越弱;
②殘差平方和越小的模型,模型擬合的效果越好;
③用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若f(x)=ex-kx的極小值為0,則k=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標(biāo)系中,已知A(1,0),B(3,2),則直線AB的傾斜角大小( 。
A.30°B.45°C.135°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a<b,函數(shù)y=(x-a)2(x-b)的圖象可能是( 。
A.B.C.D.D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在學(xué)校組織的“國學(xué)經(jīng)典”朗誦比賽中,5位評委對甲、乙兩名同學(xué)的評分如莖葉圖所示(滿分100分),若甲同學(xué)所得評分的眾數(shù)為84,則甲同學(xué)所得評分的平均數(shù)不大于乙同學(xué)所得評分的平均數(shù)的概率為( 。
A.$\frac{3}{10}$B.$\frac{1}{5}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知m為非零常數(shù),對x∈R,有f(x+m)=$\frac{1+f(x)}{1-f(x)}$恒成立,則函數(shù)f(x)的最小正周期是4m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\frac{2+sinx}{1+{x}^{2}}$是( 。
A.奇函數(shù)B.偶函數(shù)C.有界函數(shù)D.周期函數(shù)

查看答案和解析>>

同步練習(xí)冊答案