17.已知f(x)=x3-x2f'(1)+1,f'(x)為f(x)的導(dǎo)函數(shù),則f(1)=( 。
A.-1B.0C.1D.3

分析 求函數(shù)的導(dǎo)數(shù),令x=1,先求出f′(1)的值即可得到結(jié)論.

解答 解:∵f(x)=x3-x2f'(1)+1,
∴f′(x)=3x2-2xf'(1)
令x=1,
則f′(1)=3-2f'(1),
則3f′(1)=3,
則f′(1)=1,
則f(x)=x3-x2+1,
則f(1)=1-1+1=1,
故選:C

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,求函數(shù)的導(dǎo)數(shù),利用方程法求出f′(1)的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,直角三角形ABC中,∠BAC=60°,點(diǎn)F在斜邊AB上,且AB=4AF,D,E是平面ABC同一側(cè)的兩點(diǎn),AD⊥平面ABC,BE⊥平面ABC,AD=3,AC=BE=4.
(1)求證:平面CDF⊥平面CEF;
(2)若點(diǎn)M是線段CB的中點(diǎn),求EM與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.雙曲線 $\frac{x^2}{36}$-$\frac{y^2}{64}$=1的右焦點(diǎn)坐標(biāo)為(10,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.從2名女教師和5名男教師中選出3名教師(至少有1名女教師)參加某考場(chǎng)的監(jiān)考工作.要求1名女教師在室內(nèi)流動(dòng)監(jiān)考,另外2名教師固定在室內(nèi)監(jiān)考,求有多少種不同的安排方案(寫(xiě)出必要的文字說(shuō)明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo)(m,n),求:
(1)點(diǎn)P在直線x+y=7上的概率;
(2)點(diǎn)P在圓x2+y2=25外的概率.
(3)將m,n,5的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)ω是虛數(shù),z=ω+$\frac{1}{ω}$是實(shí)數(shù),且|z|≤1.
(Ⅰ)求ω的實(shí)部的取值范圍;
(Ⅱ)試判斷$\frac{1-ω}{1+ω}$是否為純虛數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,旅客從某旅游區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50米/分鐘,在甲出發(fā)2分鐘后,乙從A乘纜車到B,再?gòu)腂勻速步行到C.假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為130米/分鐘,山路AC長(zhǎng)1260米,經(jīng)測(cè)量,cosA=$\frac{12}{13}$,cosC=$\frac{3}{5}$.
(1)求索道AB的長(zhǎng);
(2)問(wèn)乙出發(fā)后多少分鐘后,乙在纜車上與甲的距離最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在數(shù)列{an}中,已知a1=1,an+1-an=sin$\frac{(n+1)π}{2}$,記Sn為數(shù)列{an}的前n項(xiàng)和,則S2018=1010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,已知∠A=$\frac{2}{3}$π,|BC|=7,|AC|=5,則|AB|=(  )
A.3B.3$\sqrt{2}$C.8D.8$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案