2.設(shè)公比為q(q>0)的等比數(shù)列{an}的前n項(xiàng)和Sn.若S2=3a2+2,S4=3a4+2,則q=(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.2D.3

分析 S2=3a2+2,S4=3a4+2,兩式相減可得:2q2-q-3=0,解出即可.

解答 解:∵S2=3a2+2,S4=3a4+2,
∴a1+a1q=3a1q+2,
${a}_{1}(1+q+{q}^{2}+{q}^{3})$=$3{a}_{1}{q}^{3}+2$,
兩式相減可得:2q2-q-3=0,
q>0,解得q=$\frac{3}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知f(x)在R上單調(diào)遞減,則滿足f($\frac{1}{x}$)>f(1)的實(shí)數(shù)x的取值范圍是{x|x>1或x<0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|y=$\sqrt{1-{x^2}}$},B={x|x=m2,m∈A},則( 。
A.A=BB.B∩A=∅C.A⊆BD.B⊆A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在等比數(shù)列{an}中,27a2+a5=0,則$\frac{{a}_{n+1}}{{a}_{n}}$=( 。
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)是定義在[0,+∞)上的單調(diào)遞增函數(shù),則滿足f (2x-1)<f($\frac{1}{3}$)的x的取值范圍是( 。
A.( $\frac{1}{3}$,$\frac{2}{3}$ )B.[$\frac{1}{3}$,$\frac{2}{3}$ )C.[$\frac{1}{2}$,$\frac{2}{3}$ )D.( $\frac{1}{2}$,$\frac{2}{3}$ )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在等比數(shù)列{an}中,記Sn=a1+a2+…+an,已知a5=2S4+3,a6=2S5+3,則此數(shù)列的公比q為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知向量$\overrightarrow a=(cosα,1)$,$\overrightarrow b=(2,-sinα)$,若$\overrightarrow a⊥\overrightarrow b$,則tan2α=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知單位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夾角為$\frac{π}{3}$,設(shè)$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,則$\overrightarrow a$與$\overrightarrow b$夾角的大小為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)列{an}中,a1=1,an+1=2nan(n∈N+),則數(shù)列{an}的通項(xiàng)公式為( 。
A.an=2n-1B.an=2nC.an=2${\;}^{\frac{n(n-1)}{2}}$D.an=2${\;}^{\frac{{n}^{2}}{2}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案