17.已知橢圓C的方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$,A、B為橢圓C的左、右頂點(diǎn),P為橢圓C上不同于A、B的動(dòng)點(diǎn),直線(xiàn)x=4與直線(xiàn)PA、PB分別交于M、N兩點(diǎn),若D(7,0),則過(guò)D、M、N三點(diǎn)的圓必過(guò)x軸上不同于點(diǎn)D的定點(diǎn),其坐標(biāo)為(1,0).

分析 設(shè)A(-2,0),B(2,0),P(x0,y0),由橢圓方程和直線(xiàn)的斜率公式,以及兩直線(xiàn)垂直的條件,計(jì)算即可得到定點(diǎn)坐標(biāo).

解答 解:設(shè)A(-2,0),B(2,0),P(x0,y0),
則$\frac{{{x}_{0}}^{2}}{4}$+$\frac{{{y}_{0}}^{2}}{3}$=1,即有y02=3(1-$\frac{{{x}_{0}}^{2}}{4}$),
設(shè)PA,PB的斜率為k1,k2,
則k1•k2=$\frac{{y}_{0}}{{x}_{0}-2}$•$\frac{{y}_{0}}{{x}_{0}+2}$=$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-4}$=-$\frac{3}{4}$,
設(shè)PA:y=k1(x+2),
則M(4,6k1),
PB:y=k2(x-2),則N(4,2k2),
又kDM=-$\frac{6{k}_{1}}{3}$=-2k1,kDN=-$\frac{2}{3}$k2,kDM•kDN=-1,
設(shè)圓過(guò)定點(diǎn)F(m,0),則$\frac{6{k}_{1}}{4-m}$•$\frac{2{k}_{2}}{4-m}$=-1,
解得m=1或m=7(舍去),
故過(guò)點(diǎn)D,M,N三點(diǎn)的圓是以MN為直徑的圓過(guò)F(1,0).
故答案為:(1,0).

點(diǎn)評(píng) 本題考查橢圓的方程和性質(zhì),主要考查離心率公式的運(yùn)用,同時(shí)考查直線(xiàn)的斜率公式的運(yùn)用,圓的直徑所對(duì)的圓周角為直角,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若x4+3x2+2=a0+a1(x+1)+a2(x+1)2+a3(x+1)3+a4(x+1)4,則a2=( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一個(gè)幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知冪函數(shù)f(x)=x${\;}^{-{m}^{2}+2m+3}$(m∈z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=$\frac{1}{4}$f(x)+ax3+x2-b(x∈R),其中a,b∈R.若函數(shù)g(x)僅在x=0處有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)ft(x)=cos2x+2tsinxcosx-sin2x
(1)若${f_1}(\frac{α}{2})=\frac{3}{4}$,試求sin2α的值.
(2)定義在$[{-\frac{π}{4},\frac{5π}{6}}]$上的函數(shù)g(x)的圖象關(guān)于x=$\frac{7π}{24}$對(duì)稱(chēng),且當(dāng)x≤$\frac{7π}{24}$時(shí),g(x)的圖象與$y={f_{\sqrt{3}}}$(x)的圖象重合.記Mα={x|g(x)=α}且Mα≠∅,試求Mα中所有元素之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.橢圓25x2+16y2=1的焦點(diǎn)坐標(biāo)是( 。
A.(±3,0)B.(±$\frac{1}{3}$,0)C.(±$\frac{3}{20}$,0)D.(0,±$\frac{3}{20}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知圓C在x軸上的截距為-1和3,在y軸上的一個(gè)截距為1.則圓C的標(biāo)準(zhǔn)方程為(x-1)2+(y+1)2=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,在四形邊ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.將△ADB沿BD折起,使CD⊥平面ABD,構(gòu)成三棱錐A-BCD.則在三棱錐A-BCD中,下列結(jié)論正確的是( 。
A.AD⊥平面BCDB.AB⊥平面BCDC.平面BCD⊥平面ABCD.平面ADC⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若a,b,c,d∈R,則“a+d=b+c”是“a,b,c,d依次成等差數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案