【題目】已知關(guān)于x的不等式|x﹣3|+|x﹣m|≥2m的解集為R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時(shí)a,b,c的值.
【答案】解:(Ⅰ)∵|x﹣3|+|x﹣m|≥|(x﹣3)﹣(x﹣m)|=|m﹣3| 當(dāng)3≤x≤m,或m≤x≤3時(shí)取等號(hào),
令|m﹣3|≥2m,
∴m﹣3≥2m,或m﹣3≤﹣2m.
解得:m≤﹣3,或m≤1
∴m的最大值為1;
(Ⅱ)由(Ⅰ)a+b+c=1.
由柯西不等式:( + +1)( 4a2+9b2+c2)≥(a+b+c)2=1,
∴4a2+9b2+c2≥ ,等號(hào)當(dāng)且僅當(dāng)4a=9b=c,且a+b+c=1時(shí)成立.
即當(dāng)且僅當(dāng)a= ,b= ,c= 時(shí),4a2+9b2+c2的最小值為
【解析】(Ⅰ)利用|x﹣3|+|x﹣m|≥|(x﹣3)﹣(x﹣m)|=|m﹣3|,對(duì)x與m的范圍討論即可.(Ⅱ)構(gòu)造柯西不等式即可得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)()在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)記兩個(gè)極值點(diǎn)分別為, (),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的值;
(2)若函數(shù)有正數(shù)零點(diǎn),求滿足條件的實(shí)數(shù)a的取值范圍;
(3)若對(duì)于任意的時(shí),不等式恒成立,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED是以BD為直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD. (Ⅰ)求證:AD⊥平面BFED;
(Ⅱ)在線段EF上是否存在一點(diǎn)P,使得平面PAB與平面ADE所成的銳二面角的余弦值為 .若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)的推廣給消費(fèi)者帶來(lái)全新消費(fèi)體驗(yàn),迅速贏得廣大消費(fèi)者的青睞,然而,同時(shí)也暴露出管理、停放、服務(wù)等方面的問(wèn)題,為了了解公眾對(duì)共享單車(chē)的態(tài)度(提倡或不提倡),某調(diào)查小組隨機(jī)地對(duì)不同年齡段50人進(jìn)行調(diào)查,將調(diào)查情況整理如下表:
并且,年齡在和的人中持“提倡”態(tài)度的人數(shù)分別為5和3,現(xiàn)從這兩個(gè)年齡段中隨機(jī)抽取2人征求意見(jiàn).
(Ⅰ)求年齡在中被抽到的2人都持“提倡”態(tài)度的概率;
(Ⅱ)求年齡在中被抽到的2人至少1人持“提倡”態(tài)度的概率.
【答案】(1);(2).
【解析】試題分析:(1)年齡在[20,25)中共有6人,其中持“提倡”態(tài)度的人數(shù)為5,其中抽兩人,基本事件總數(shù)n=15,被抽到的2人都持“提倡”態(tài)度包含的基本事件個(gè)數(shù)m=10,由此能求出年齡在[20,25)中被抽到的2人都持“提倡”態(tài)度的概率.(2)年齡在[40,45)中共有5人,其中持“提倡”態(tài)度的人數(shù)為3,其中抽兩人,基本事件總數(shù)n′=10,年齡在[40,45)中被抽到的2人至少1人持“提倡”態(tài)度包含的基本事件個(gè)數(shù)m′=9,由此能求出年齡在[40,45)中被抽到的2人至少1人持“提倡”態(tài)度的概率.
解析:
(1)設(shè)在中的6人持“提倡”態(tài)度的為, , , , ,持“不提倡”態(tài)度的為.
總的基本事件有(),(),(),(),(),(),(),(),(),(),(),(),(),(),().共15個(gè),其中兩人都持“提倡”態(tài)度的有10個(gè),
所以P==
(2)設(shè)在中的5人持“提倡”態(tài)度的為, , ,持“不提倡”態(tài)度的為, .
總的基本事件有(),(),(),(),(),(),(),(),(),(),共10個(gè),其中兩人都持“不提倡”態(tài)度的只有()一種,所以P==
【題型】解答題
【結(jié)束】
22
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知圓的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)),若與交于兩點(diǎn).
(Ⅰ)求圓的直角坐標(biāo)方程;
(Ⅱ)設(shè),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,點(diǎn)(a,b)在4xcosB﹣ycosC=ccosB上.
(1)cosB的值;
(2)若 =3,b=3 ,求a和c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是實(shí)數(shù),已知奇函數(shù),
(1)求的值;
(2)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斜率為1,過(guò)拋物線的焦點(diǎn)的直線被拋物線所截得的弦長(zhǎng)為( )
A. 8 B. 6 C. 4 D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面是邊長(zhǎng)為2的菱形, , , , , 為的中點(diǎn).
(1)證明: ;
(2)求二面角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com