A. | $\frac{{2+\sqrt{2}}}{2}$ | B. | $2+\sqrt{2}$ | C. | $1+\sqrt{2}$ | D. | $\frac{{1+\sqrt{2}}}{2}$ |
分析 確定拋物線y2=2px(p>0)的焦點(diǎn)與準(zhǔn)線方程,利用點(diǎn)M為這兩條曲線的一個(gè)交點(diǎn),且|MF|=p,求出M的坐標(biāo),代入雙曲線方程,即可求得結(jié)論.
解答 解:拋物線y2=2px(p>0)的焦點(diǎn)為F($\frac{p}{2}$,0),其準(zhǔn)線方程為x=-$\frac{p}{2}$,
∵準(zhǔn)線經(jīng)過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左焦點(diǎn),
∴c=$\frac{p}{2}$;
∵點(diǎn)M為這兩條曲線的一個(gè)交點(diǎn),且|MF|=p,
∴M的橫坐標(biāo)為$\frac{p}{2}$,
代入拋物線方程,可得M的縱坐標(biāo)為±p,
將M的坐標(biāo)代入雙曲線方程,可得$\frac{\frac{{p}^{2}}{4}}{{a}^{2}}$-$\frac{{p}^{2}}{^{2}}$=1,∴a=$\frac{\sqrt{2}-1}{2}$p,
∴e=$\frac{c}{a}$=1+$\sqrt{2}$.
故選:C.
點(diǎn)評 本題考查拋物線的幾何性質(zhì),考查曲線的交點(diǎn),考查雙曲線的幾何性質(zhì),確定M的坐標(biāo)是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}\overrightarrow{OA}+\frac{2}{5}\overrightarrow{OB}$ | B. | $\frac{2}{5}\overrightarrow{OA}+\frac{3}{5}\overrightarrow{OB}$ | C. | $\frac{3}{5}\overrightarrow{OA}-\frac{2}{5}\overrightarrow{OB}$ | D. | $\frac{2}{5}\overrightarrow{OA}-\frac{3}{5}\overrightarrow{OB}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{10}$a | B. | $\frac{3\sqrt{7}}{10}$a | C. | $\frac{3\sqrt{5}}{10}$a | D. | $\frac{7}{10}$a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或10 | B. | 10 | C. | 2 | D. | 4或8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com