17.已知函數(shù)f(x)=$\frac{6x}{{x}^{2}+1}$.
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(Ⅱ)求滿足不等式f(2x)>2x的實(shí)數(shù)x的取值范圍.

分析 (Ⅰ)可看出f(x)為奇函數(shù),求f(x)的定義域?yàn)镽,且容易得到f(-x)=-f(x),從而證出f(x)為奇函數(shù);
(Ⅱ)由原不等式可以得到$\frac{6•{2}^{x}}{{2}^{2x}+1}>{2}^{x}$,可化簡(jiǎn)成22x<5,不等式兩邊取以2為底的對(duì)數(shù)便可得出實(shí)數(shù)x的取值范圍.

解答 解:(Ⅰ)f(x)為奇函數(shù),證明如下:
f(x)的定義域?yàn)镽,f(-x)=$\frac{-6x}{{x}^{2}+1}=-f(x)$;
∴f(x)為奇函數(shù);
(Ⅱ)由f(2x)>2x得,$\frac{6•{2}^{x}}{{2}^{2x}+1}>{2}^{x}$;
∴$\frac{6}{{2}^{2x}+1}>1$;
整理成22x<5;
∴2x<log25;
∴$x<\frac{lo{g}_{2}5}{2}$;
即$x<lo{g}_{2}\sqrt{5}$;
∴實(shí)數(shù)x的取值范圍為(-∞,$lo{g}_{2}\sqrt{5}$).

點(diǎn)評(píng) 考查奇函數(shù)的定義及判斷方法和過(guò)程,指數(shù)函數(shù)的值域,分式不等式的解法,以及指數(shù)式和對(duì)數(shù)式的互化,對(duì)數(shù)函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)y=1-$\frac{2}{{4}^{x}+1}$的值域?yàn)椋ā 。?table class="qanwser">A.(-∞,-1)B.(-∞,-1]C.[-1,1]D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,已知P為△ABC內(nèi)一點(diǎn)(不包括邊界),證明:S△PAB•$\overrightarrow{PC}$+S△PBC•$\overrightarrow{PA}$+S△PCA•$\overrightarrow{PB}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.△ABC的內(nèi)角A、B、C所對(duì)應(yīng)的邊分別為a,b,c,且asinB-$\sqrt{3}$bcosA=0
(1)求角A;
(Ⅱ)若$\overrightarrow{AB}$2+$\overrightarrow{AC}$•$\overrightarrow{BC}$-$\overrightarrow{BC}$2=4,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=4sinωxcos(ωx+$\frac{π}{3}$)+2$\sqrt{3}$(ω>0).
(1)若f(x)的最小正周期為π,求f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值和最小值取得最值時(shí)x的值;
(2)若y=f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{6}$]上為增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.某校高一學(xué)生1500人,高二學(xué)生1200人,高三學(xué)生1300人,為了調(diào)查高中各年級(jí)學(xué)生的寒假學(xué)習(xí)計(jì)劃,決定采用分層抽樣法抽取200人進(jìn)行調(diào)查,則應(yīng)從高二年級(jí)抽取的人數(shù)為( 。
A.75B.65C.60D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)命題p:?x>1,x+$\frac{1}{x}$>2,則¬p為(  )
A.?x>1,x+$\frac{1}{x}$≤2B.?x>1,x+$\frac{1}{x}$≤2C.?x≤1,x+$\frac{1}{x}$≤2D.?x≤1,x+$\frac{1}{x}$≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.對(duì)于定義域?yàn)镽的函數(shù)g(x),若存在正常數(shù)T,使得cosg(x)是以T為周期的函數(shù),則稱g(x)為余弦周期函數(shù),則下列函數(shù)中余弦周期函數(shù)有多少個(gè)?( 。
①h(x)=2016x  
②h(x)=|x|
③h(x)=x+sin$\frac{x}{3}$.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)若f(x0)=-$\frac{\sqrt{10}}{5}$,且x0∈(-$\frac{2}{3}$,$\frac{4}{3}$),求f(x0+$\frac{1}{3}$)的值.(參考公式:sin(α±β)=sinαcosβ±cosαsinβ)

查看答案和解析>>

同步練習(xí)冊(cè)答案