9.設(shè)命題p:?x>1,x+$\frac{1}{x}$>2,則¬p為(  )
A.?x>1,x+$\frac{1}{x}$≤2B.?x>1,x+$\frac{1}{x}$≤2C.?x≤1,x+$\frac{1}{x}$≤2D.?x≤1,x+$\frac{1}{x}$≤2

分析 本題中的命題是一個(gè)全稱命題,其否定是特稱命題,依據(jù)全稱命題的否定書(shū)寫(xiě)形式:將量詞“?”與“?”互換,結(jié)論同時(shí)否定,寫(xiě)出命題的否定即可

解答 解:∵命題p:?x>1,x+$\frac{1}{x}$>2,
∴命題p的否定是“?x>1,x+$\frac{1}{x}$≤2”
故選:B.

點(diǎn)評(píng) 本題考查命題的否定,解題的關(guān)鍵是掌握并理解命題否定的書(shū)寫(xiě)方法規(guī)則,全稱命題的否定是特稱命題,特稱命題的否定是全稱命題,書(shū)寫(xiě)時(shí)注意量詞的變化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.△ABC的三個(gè)內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c,且asin($\frac{3π}{2}$-C),bcos(2π-B),ccos(π+A)成等差數(shù)列,則△ABC是(  )
A.直角三角形B.銳角三角形C.鈍角三角形D.正三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1并且,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{2π}{3}$,則($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$的值為( 。
A.1B.-2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{6x}{{x}^{2}+1}$.
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(Ⅱ)求滿足不等式f(2x)>2x的實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.變量x,y具有線性相關(guān)關(guān)系,現(xiàn)測(cè)得一組數(shù)據(jù)如下:
 x 2 3 4 5
 y 2 2.5 3.5 4
根據(jù)如表,利用最小二乘法得到回歸直線方程$\stackrel{∧}{y}$=0.7x+0.55,據(jù)此判斷,當(dāng)x=5,時(shí),$\stackrel{∧}{y}$與實(shí)際值y的大小關(guān)系為(  )
A.$\stackrel{∧}{y}$>yB.$\stackrel{∧}{y}$>yC.$\stackrel{∧}{y}$=yD.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知集合A={-1,0,1},B={0,a,2},若A∩B={-1,0},則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=x1g(mx+$\sqrt{{x}^{2}+1}$)為偶函數(shù),則m=( 。
A.-1B.1C.-1或1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.(3n+6-5×3n+1)÷(7×3n+2)=$\frac{34}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖所示,正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為側(cè)面BB1C1C與CC1D1D的中心.
(1)判斷A1E與B1F的位置關(guān)系;
(2)求A1E與B1F所成的角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案