7.設(shè)函數(shù)y=f(x)是定義在上(0,+∞)的減函數(shù),并且滿足f(xy)=f(x)+f(y),$f(\frac{1}{3})=\frac{1}{2}$.
(1)求f(1);
(2)若存在實數(shù)m,使得f(m)=1,求m的值;
(3)若f(x-2)>1+f(x),求x的取值范圍.

分析 (1)利用賦值法令x=y=1,代入求解即可.
(2)根據(jù)抽象函數(shù)的關(guān)系進行求解即可.
(3)根據(jù)函數(shù)單調(diào)性以及抽象函數(shù)的關(guān)系解不等式即可.

解答 解:(1)令x=y=1,則f(1)=f(1)+f(1),
∴f(1)=0.
(2)∵f($\frac{1}{3}$)=$\frac{1}{2}$,
∴f($\frac{1}{9}$)=f($\frac{1}{3}$×$\frac{1}{3}$)=f($\frac{1}{3}$)+f($\frac{1}{3}$)=$\frac{1}{2}$+$\frac{1}{2}$=1,
∴m=$\frac{1}{9}$;
(3))∵f(x-2)>1+f(x),
∴f(x-2)>f($\frac{1}{9}$)+f(x)=f($\frac{1}{9}$x),
∵函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),
∴$\left\{\begin{array}{l}{x-2>0}\\{x>0}\\{x-2<\frac{1}{9}x}\end{array}\right.$即$\left\{\begin{array}{l}{x>2}\\{x>0}\\{x<\frac{9}{4}}\end{array}\right.$,得2<x<$\frac{9}{4}$,
∴x的取值范圍2<x<$\frac{9}{4}$.

點評 本題主要考查函數(shù)的單調(diào)性及運用,考查解決抽象函數(shù)的常用方法:賦值法,考查基本的運算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某精密儀器生產(chǎn)有兩道相互獨立的先后工序,每道工序都要經(jīng)過相互獨立的工序檢查,且當(dāng)?shù)谝坏拦ば驒z查合格后才能進入第二道工序,兩道工序都合格,產(chǎn)品才完全合格,.經(jīng)長期監(jiān)測發(fā)現(xiàn),該儀器第一道工序檢查合格的概率為$\frac{8}{9}$,第二道工序檢查合格的概率為$\frac{9}{10}$,已知該廠三個生產(chǎn)小組分別每月負(fù)責(zé)生產(chǎn)一臺這種儀器.
(I)求本月恰有兩臺儀器完全合格的概率;
(Ⅱ)若生產(chǎn)一臺儀器合格可盈利5萬元,不合格則要虧損1萬元,記該廠每月的贏利額為ξ,求ξ的分布列和每月的盈利期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)唯一的零點同時在(1,1.5),(1.25,1.5),(1.375,1.5),(1.4375,1.5)內(nèi),則該零點(精確度為0.01)的一個近似值約為( 。
A.1.02B.1.27C.1.39D.1.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.連續(xù)拋擲2顆骰子,則出現(xiàn)朝上的點數(shù)之和等于8的概率為$\frac{5}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線y2=ax(a>0),過動點P(m,0)且斜率為1的直線與該拋物線交于不同的兩點A,B,|AB|≤a.
(1)求m的取值范圍;
(2)若線段AB的垂直平分線交x軸于點Q,求△QAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.橢圓C的中心為坐標(biāo)原點O,焦點在y軸上,離心率$e=\frac{{\sqrt{2}}}{2}$,橢圓上的點到焦點的最短距離為1-$\frac{\sqrt{2}}{2}$,直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且$\overrightarrow{AP}$=3$\overrightarrow{PB}$.
(1)求橢圓的方程;
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線ax-2by+1=0(a>0,b>0)平分圓x2+y2+4x-2y-1=0的面積,則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.3+2$\sqrt{2}$B.4+2$\sqrt{3}$C.6+4$\sqrt{2}$D.8$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{4}+{y}^{2}$=1的左頂點為A,上頂點為B,點C、D是橢圓上的兩個不同點,且CD∥AB,直線CD與x軸、y軸分別交于點M和N,且$\overrightarrow{MC}$=λ$\overrightarrow{CN}$,$\overrightarrow{MD}$=μ$\overrightarrow{DN}$,求λ+μ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,已知橢圓$\frac{{x}^{2}}{2}$+y2=1的四個頂點分別為A1,A2,B1,B2,左右焦點分別為F1,F(xiàn)2,若圓C:(x-3)2+(y-3)2=r2(0<r<3)上有且只有一個點P滿足$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=$\sqrt{5}$.
(1)求圓C的半徑r;
(2)若點Q為圓C上的一個動點,直線QB1交橢圓于點D,交直線A2B2于點E,求$\frac{|D{B}_{1}|}{|E{B}_{1}|}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案