A. | $\frac{2π}{9}$ | B. | $\frac{π}{9}$ | C. | $\frac{π}{18}$ | D. | $\frac{π}{36}$ |
分析 利用兩角和的正弦函數(shù)公式化簡(jiǎn)函數(shù)解析式可得f(x)=sin(2x+φ),由f(x)≤f($\frac{2π}{9}$),可得sin($\frac{4π}{9}$+φ)=1,結(jié)合范圍0<φ<$\frac{π}{2}$,由正弦函數(shù)的圖象和性質(zhì)可得φ的值.
解答 解:∵f(x)=sin2xcosφ+cos2xsinφ=sin(2x+φ),
∴由f(x)≤f($\frac{2π}{9}$),可得:sin(2x+φ)≤sin($\frac{4π}{9}$+φ),
∵sin(2x+φ)≤1,0<φ<$\frac{π}{2}$,x∈R,
∴sin($\frac{4π}{9}$+φ)=1,可得:$\frac{4π}{9}$+φ=2kπ+$\frac{π}{2}$,k∈Z,解得:φ=2kπ+$\frac{π}{18}$,k∈Z,
∴由0<φ<$\frac{π}{2}$,可得:φ=$\frac{π}{18}$.
故選:C.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,考查了正弦函數(shù)的圖象和性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | HG=2OG | B. | $\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$ | ||
C. | 設(shè)BC邊中點(diǎn)為D,則有AH=3OD | D. | S△ABG=S△BCG=S△ACG |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | d>c>b>a | B. | d>c>a>b | C. | c>d>b>a | D. | a>b>d>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com