7.已知多項(xiàng)式(1+ax)3(3-2x)4的展開式的各項(xiàng)系數(shù)和為27.則其展開式中按x的降冪排列的第2項(xiàng)系數(shù)等于-576.

分析 令x=1,利用展開式中各項(xiàng)系數(shù)和求出a的值;再求出(1+2x)3(3-2x)4展開式中含x6項(xiàng)的系數(shù)即可.

解答 解:多項(xiàng)式(1+ax)3(3-2x)4的展開式的各項(xiàng)系數(shù)和為27,
令x=1,得(1+a)3(3-2)4=27,
解得a=2;
所以(1+2x)3(3-2x)4展開式中按x的降冪排列的第2項(xiàng)是含x6項(xiàng),
是第一個(gè)因式中3個(gè)2x與第二個(gè)因式中3個(gè)(-2x)的積,
加上第一個(gè)因式中2個(gè)2x與第二個(gè)因式中4個(gè)(-2x)的積,
即(2x)3•${C}_{4}^{3}$•3•(-2x)3+${C}_{3}^{2}$•(2x)2•(-2x)4=-768x6+192x6=-576x6
故系數(shù)為-576.
故答案為:-576.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用問題,也考查了利用賦值法求多項(xiàng)式展開式系數(shù)和的問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=$\frac{3•{5}^{x}-5•{3}^{x}}{{5}^{x+1}+{3}^{x+1}}$的值域?yàn)椋?$\frac{5}{3}$,$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若動(dòng)點(diǎn)A(x1,y1),B(x2,y2)分別在直線l1:x+y-2=0和l2:x+y-6=0上移動(dòng),則AB中點(diǎn)M到原點(diǎn)距離的最小值為( 。
A.2$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}中,a1=2,an=3an-1+2(n≥2,n∈N*),數(shù)列{bn}中,bn=an+1.
(Ⅰ)證明數(shù)列{bn}是等比數(shù)列,并求其通項(xiàng)公式;
(Ⅱ)若cn=$\frac{_{n}}{(_{n}+1)(_{n}+3)}$,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義[x]為不超過x的最大整數(shù),如[3.3]=3,[-1.8]=-2,設(shè)f(x)=x-[x],x∈R,要使得方程f(x)=ax恰有2015個(gè)實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(  )
A.(-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2015}$,$\frac{1}{2014}$)B.(-$\frac{1}{2014}$,-$\frac{1}{2015}$)∪($\frac{1}{2015}$,$\frac{1}{2014}$)
C.(-$\frac{1}{2013}$,-$\frac{1}{2014}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$)D.(-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,等差數(shù)列{bn}的前n項(xiàng)和為Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{7n+3}{n+3}$,求$\frac{{a}_{n}}{_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.角α的終邊在第二、四象限的角平分線上,則角α的集合為{α|α=kπ+$\frac{3π}{4}$,k∈z }(用弧度制表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.經(jīng)過點(diǎn)P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段沒有公共點(diǎn),則直線l的斜率k與傾斜角α的取值范圍分別是( 。
A.(-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{3π}{4}$)B.(-∞,-1)∪(1,+∞),($\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$)
C.(-1,1),[$\frac{π}{4}$,$\frac{3π}{4}$]D.(-1,1),[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.冪函數(shù)y=x3在[1,2]上的最大值與最小值之和為( 。
A.10B.9C.8D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案